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Figure 1: Relighting and composition results of our method in the GARDEN scene represented by 3DGS. Two mesh models, BUNNY
and TEAPOT, are inserted into the scene. Two extracted radiance fields, the vase from the GARDEN and the statue from the FAMILY,
are also inserted into the scene and relit. In the right image, the entire scene is also relit by an environment map (UFFIZI GALLERY).
Our method can simulate a full global illumination solution and capture the inter-object effects such as soft shadows and glossy
interreflections at real-time frame rates.

ABSTRACT

Radiance fields, such as neural radiance fields (NeRFs) and 3D
Gaussian splatting (3DGS), are the new primitives to represent 3D
scenes. Relighting and composition of radiance fields are critical
for modeling the complex 3D world in computer graphics. How-
ever, it is difficult to relight and composite radiance fields because
traditional physically-based rendering techniques, such as path trac-
ing, cannot be directly applied to radiance fields. We propose a
physically-based relighting and composition method for radiance
fields with proxy meshes. A unified framework is presented to
enable us to use radiance fields as the traditional assets in com-
puter graphics. We generate proxy meshes of the radiance fields by
reconstructing the geometries of the scenes using Gaussian-based
surface reconstruction and the materials using physically-based dif-
ferentiable rendering. We leverage differential rendering, which is
previously used in augmented reality (AR) and mixed reality (MR),
to evaluate the radiance change on the proxy meshes introduced by
the changing lighting condition, the inserted radiance fields, or the
inserted mesh models. Proxy meshes can help us utilize hardware-
accelerated ray tracing to perform real-time path tracing. Experi-
mental results show that our method outperforms the baselines in
terms of relighting performance and can achieve photorealistic re-
lighting and composition of radiance fields in real-time.

Index Terms: Radiance field, relighting, scene composition, dif-
ferential rendering, differentiable rendering, path tracing, Gaussian
splatting.
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1 INTRODUCTION

In recent years, radiance fields, such as NeRFs [2, 3, 34, 36] and
3DGS [24], have gained much attention in the computer graphics
and computer vision communities. As novel view synthesis meth-
ods, radiance fields can be utilized to directly represent a scene us-
ing the outgoing radiance instead of explicitly modeling the scene
properties such as geometry, materials, and light sources, which
improves the reconstruction quality, especially for the real world
because the scene properties of a real-world scene cannot be accu-
rately estimated.

If we regard radiance fields as a new type of 3D asset in com-
puter graphics, relighting and composition of radiance fields are
necessary because one scene may consist of many different mod-
els, including radiance fields and even traditional mesh models, and
the scene itself can also be represented by mesh models. However,
realistic relighting and composition of radiance fields is difficult
because traditional photorealistic rendering techniques such as path
tracing cannot be directly applied to radiance fields or the efficiency
is very low. Many attempts have been made to relight and com-
posite radiance fields. But most of them neglect the inter-object
effects, such as soft shadows and interreflections, which leads to
a lack of realism [11]. R3DG [13] can produce shadow effects
but cannot render interreflections, PRTGS [16] only supports low-
frequency indirect illumination, and IRGS [15] cannot work with
unbounded scenes. Additionally, most existing relighting and com-
position methods are specially designed for a specific type of radi-
ance field (typically a variant of 3DGS) and cannot generalize for
all types of radiance fields, including new types in the future.

Our goal consists of four aspects: (1) Relight radiance fields
themselves with HDR environment maps; (2) composite multiple
radiance fields into a scene; (3) insert traditional mesh models into
the scene represented by a radiance field; (4) insert radiance fields
into a scene represented by traditional polygonal meshes. We pro-
pose a unified rendering pipeline to put all these tasks together,
which enables us to use radiance fields as the traditional assets
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in computer graphics, such as polygonal meshes. We borrow the
idea of differential rendering [10, 33] from AR/MR to compute the
change in outgoing radiance introduced by the changing lighting
condition, the inserted radiance fields, or the inserted mesh models.
We generate proxy meshes of radiance fields through GS-based sur-
face reconstruction and physically-based differentiable rendering
for material estimation. With proxy meshes, we can leverage the
hardware-accelerated ray tracing of modern GPUs to perform path
tracing at real-time frame rates. Experiments demonstrate that our
method can relight a radiance field with a new environment map,
seamlessly integrate radiance fields or mesh models into a scene
represented by another radiance field, and insert radiance fields into
a scene represented by meshes at real-time frame rates.

The contributions of our work are summarized as follows:

• A unified framework based on differential rendering on proxy
meshes for relighting and composition of radiance fields.

• A real-time rendering pipeline based on hardware-accelerated
differential path tracing to relight and composite radiance
fields.

• A two-stage inverse rendering pipeline based on 3DGS and
physically-based differentiable rendering to generate proxy
meshes for radiance fields.

Our method can work in the unbounded scenes without provid-
ing masks of the interested objects. Our method is independent of
the training process and the representation of a radiance field, which
means that different types of radiance fields can be directly utilized
in our method.

2 RELATED WORKS

Radiance Fields NeRF [34] learns a multi-layer perceptron
(MLP) representation of the scene through differentiable volumet-
ric rendering for novel view synthesis. Instant-NGP [36] acceler-
ates training and rendering of NeRFs with fully-fused MLPs and
multiresolution hash encoding. Mip-NeRF 360 [2] uses a non-
linear scene parameterization, online distillation, and a distortion-
based regularizer to support unbounded scenes. Zip-NeRF [3] inte-
grates the techniques from Mip-NeRF 360 and Instant-NGP. 3DGS
[24] learns a 3D Gaussian representation of the scene through
differentiable splatting. HiFi4G [21] introduces a compact 4D
Gaussian representation for human performance rendering. Mip-
Splatting [59] introduces a 3D smoothing filter and a 2D Mip filter
to eliminate the artifacts of 3DGS. Scaffold-GS [29] utilizes anchor
points to distribute local 3D Gaussians and dynamically predicts
their attributes based on the viewing direction and distance within
the frustum. 2DGS [19] collapses 3D Gaussians into a set of 2D
oriented planar Gaussian disks to provide view-consistent geome-
try. 3DGRT [35] builds proxy geometries and a bounding volume
hierarchy (BVH) for 3D Gaussians to support hardware-accelerated
ray tracing.

Relighting of Radiance Fields NeRV [45] trains MLPs to
predict volume density, normal, and material parameters along with
visibility and termination depth in any direction at each location
to enable relighting. NeRD [6] decomposes shape, SVBRDFs,
and illumination represented by spherical Gaussians (SG) using a
NeRF-like coordinate-based neural representation to enable relight-
ing. Neural-PIL [7] replaces SG with a pre-integrated lighting net-
work that can convert costly light integration during rendering into
a simple network query. Zhang et al. [64] trains MLPs to pre-
dict indirect illumination and visibility of direct illumination to re-
cover SVBRDFs and environment light sources. NeRF-OSR [44]
learns a neural scene representation that decomposes spatial occu-
pancy, illumination, shadowing, and diffuse albedo from outdoor
data captured at different viewpoints and illuminations to enable

relighting. SOL-NeRF [47] decomposes outdoor scenes into ge-
ometry, reflectance, and lighting. A hybrid lighting representation
composed of SG and spherical harmonics (SH) is introduced to es-
timate shadows of skylights. TensoIR [23] introduces an inverse
rendering method based on tensor factorization to enable relighting
of TensoRF. Visibility and indirect lighting can be computed online
to provide second-bounce shading effects. NRHints [60] models
both the local and indirect radiance at each point by a relightable
radiance MLP that leverages shadow and highlight hints to model
high-frequency light transport effects. However, the NeRF-based
methods cannot achieve real-time relighting. GS3 [4] trains spatial
and angular Gaussians to enable relighting, which replaces SH with
a Lambertian and a mixture of angular Gaussians for each spatial
Gaussian. The self-shadow values are captured by splatting all spa-
tial Gaussians towards the light source, and global illumination is
captured by using an MLP to add an RGB tuple for each spatial
Gaussian. RNG [12] uses neural Gaussians to achieve faster train-
ing and rendering. However, NRHints [60], GS3 [4], and RNG [12]
use point-lit input images, which limits their applications. R3DG
[13] learns normals, BRDFs, and incident lights and performs shad-
ing for each 3D Gaussian. The shaded colors of all Gaussians are
alpha-blended to enable relighting, and the visibility is computed
by ray tracing on the Gaussians. PRTGS [16] precomputes radi-
ance transfer for each 3D Gaussian to enable real-time relighting
but only supports soft shadows and diffuse interreflections due to
the low-frequency nature of the SH basis. 3DGS and 2DGS can
be relit by performing deferred shading on the rendered depth and
normal maps (G-buffer) [22, 27, 11, 9, 15, 54]. GS-IR [27] mod-
els indirect lighting with baked occlusion represented by SH, but
fails to model high-frequency specular indirect illumination. GI-
GS [9] performs ray marching on the G-buffer to compute indirect
illumination. IRGS [15] employs 2D Gaussian ray tracing to di-
rectly query the incident indirect radiance and visibility. However,
the radiance of each Gaussian becomes invalid as the illumination
changes, which requires the split-sum approximation to query indi-
rect radiance when performing relighting. Poirier-Ginter et al. [39]
propose a radiance field relighting method based on diffusion mod-
els, which fine-tunes a diffusion model conditioned on the domi-
nant lighting direction to augment a single-illumination dataset to a
multi-illumination one and then train a multi-illumination 3DGS on
it. But the multi-illumination dataset of the same scene is required
to fine-tune the model.

Composition of Radiance Fields NeRFs can be composited
by learning a compositional NeRF [48, 50, 55] or generating neu-
ral depth fields that quickly determine the spatial relationship be-
tween objects by allowing direct intersection of rays and implicit
surfaces [14], but the illumination change and inter-object effects
are neglected or only hard shadows are considered [14]. Multiple
3D Gaussian point clouds can be easily composited by putting all
Gaussians together, but the illumination difference and inter-object
effects should be further considered to enhance realism. Some ra-
diance field relighting methods can also composite radiance fields
[11, 13, 16, 15].

Inserting Mesh Models into Radiance Fields Wang et al.
[51] learns a neural intrinsic field of the scene and converts it into
an explicit mesh. Primary rays are traced on the neural field, and the
secondary rays are traced on the mesh to enable relighting and in-
sertion of mesh models with shadows. Qiao et al. [41] inserts mesh
models into a NeRF using a hybrid rendering pipeline combining
the light transport equations for both NeRF and meshes. Ye et al.
[58] precompute spherical signed distance fields for the inserted
mesh models to render shadows cast on a NeRF. However, they
suffer from low rendering efficiency or simplification in rendering.
3DGRT [35] and 3DGUT [53] can insert mesh models into a 3D
Gaussian radiance field, but only support simple lighting effects
such as hard shadows and mirror reflections/refractions because in-
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Figure 2: Overview of our method. In the offline part, we generate the proxy meshes with PBR textures, acceleration structures, and environment
maps through physically-based differentiable rendering. In the runtime part, we compute the outgoing radiance under the new environment map
and the original environment map of the inserted radiance field to relight it.

verse rendering is not performed and the intersection efficiency is
not high enough.

Physically-Based Differentiable Rendering Physically-
based differentiable rendering on mesh models has been widely
studied to achieve inverse rendering. PhySG [62] represents
specular BRDFs and environment light sources using mixtures
of SGs to efficiently simulate light transport. Zhao et al. [38]
reconstructs lighting and material parameters using differentiable
rendering with a texture-space sampling scheme. Luan et al. [30]
employs physically-based differentiable rendering with several
shape and material priors to reconstruct geometry and SVBRDFs
from multi-view images. Munkberg et al. [37] employs a differen-
tiable rasterizer to learn geometries, materials, and lighting from
images. Hasselgren et al. [17] introduces a differentiable Monte
Carlo renderer incorporating multiple importance sampling (MIS)
and denoising. NeILF [56] introduces neural incident light fields
to handle occlusions and indirect lights and optimizes material and
lighting through differentiable rendering. NeILF++ [61] unifies
the incident and outgoing light fields through inter-reflections
between surfaces to reconstruct scene geometries and materials.
Sun et al. [46] combines neural-based object reconstruction with
physically-based differentiable rendering to reconstruct object
shape, material, and illumination. In this work, we use physically-
based differentiable path tracing to optimize the SVBRDFs and the
environment map of a proxy mesh.

Differential Rendering Differential rendering proposed by
Debevec [10] is a rendering technique for object insertion in
AR/MR. Kán et al. [26] introduces differential irradiance caching,
which uses one-pass differential rendering that evaluates mixed and
real irradiances together in a single pass by using multiple ray types.
Mehta et al. [33] introduces a two-mode path tracing that performs
mesh-based ray tracing for virtual objects and screen-space ray trac-
ing for real objects. Rhee et al. [42] employs differential rendering
to seamlessly composite virtual objects into a 360° video. Rohmer
et al. [43] introduces several differential rendering techniques based
on ray tracing, including environment map sampling, distance im-
postor tracing, and voxel cone tracing. Ma et al. [31] introduces
a neural compositing method that leverages convolutional neural
networks to composite rendering layers of virtual objects with real
images. In this work, we use differential path tracing to compute

the radiance change caused by the changing lighting or the inserted
radiance fields/mesh models.

3 OVERVIEW

In this work, we generate proxy meshes along with the SVBRDFs
and HDR environment maps for the radiance fields to support
traditional physically-based rendering. We use triangular meshes
to present the proxy meshes, which benefit from the hardware-
accelerated ray tracing of modern GPUs. Based on the proxy
meshes with SVBRDFs and environment maps, we use differential
path tracing to compute the radiance change introduced by the new
lighting condition or the inserted radiance fields to relight the radi-
ance fields and simulate the inter-object effects when compositing
multiple radiance fields.

As illustrated in Fig. 2, our method is composed of offline and
runtime parts. In the offline part, we generate the proxy meshes
for radiance fields along with the SVBRDFs and HDR environment
maps using physically-based differentiable rendering. In the run-
time part, we perform physically-based relighting and composition
of radiance fields at real-time frame rates.

In the runtime part, our real-time rendering pipeline includes
three stages. In the first stage, we render the radiance fields. In the
second stage, we perform physically-based differential path tracing
in a unified framework. And post processing is conducted in the
last stage to denoise and blur the rendering results.

4 PROXY MESH GENERATION

We use a two-stage inverse rendering pipeline to generate the proxy
mesh for a radiance field.

4.1 Geometry Reconstruction
Multi-view images of the scene are used to reconstruct the trian-
gular mesh via planar-based Gaussian splatting reconstruction rep-
resentation (PGSR) [8]. To handle strong specular reflections, we
leverage the monocular normal prior from StableNormal [57] to su-
pervise the rendered normal in PGSR using the following loss func-
tion:

Lnormal = ∑(1−nrender ·nmono), (1)

where nmono is the estimated normal prior from StableNormal, and
nrender denotes the rendered normal via alpha blending.
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w/o LO w/ LO

Figure 3: Comparison of the reconstructed geometries and the final
relighting results without and with the binary cross-entropy loss.

For the scenes with masks, we follow R3DG [13] and IRGS [15]
to constrain the geometry using a binary cross-entropy loss

LO =−M logO− (1−M) log(1−O), (2)

where M is the object mask and O is the accumulated opacity. The
reconstructed geometries and the final relighting results w/o and w/
LO are shown in Fig. 3.

Since the triangular meshes are used for ray tracing in the ren-
dering pipeline, we decimate the mesh to reduce the triangle count.
A texture atlas is generated for the mesh to enable texture map-
ping in the following differentiable rendering stage to reconstruct
the SVBRDFs.

4.2 Environment Map and SVBRDF Estimation
Since differential rendering is used in our rendering pipeline, the
light source and material of a scene should be acquired along with
the geometry. We model the light source of a scene as an HDR
environment map, and the materials of a scene are modeled us-
ing SVBRDFs represented by the Disney principled BRDF [18].
Once the geometry of a scene is obtained, we estimate the light
sources and the material of the scene using physically-based dif-
ferentiable rendering. We optimize the HDR environment map and
the spatially-varying base color and roughness simultaneously. We
employ a loss function as follows to optimize these parameters

L= Lrender +λbasecolorLbasecolor +λroughLrough +λlightLlight, (3)

where Lrender is the rendering loss given by the L1 losses between
the target image I j and the rendered image Î j using the estimated
parameters

Lrender =
N

∑
j=1

∥∥I j− Î j
∥∥

1 , (4)

Lbasecolor, Lrough, and Llight are the regularization losses of base
color, roughness, and environment light source. These three regu-
larization losses are explained in detail as follows:

Regularization Spatially-varying base color and roughness
are difficult to optimize even with the known geometry because am-
biguity exists between the base color and roughness. Additionally,
the physicially-based differentiable renderer we used can produce
Monte Carlo noise, which results in noisy base color and rough-
ness maps, and the optimized environment map can also be noisy
due to Monte Carlo sampling. To obtain smooth base color, rough-
ness, and environment maps, we regularize the base color, rough-
ness, and environment maps using total variation losses. Taking the
roughness as an example, we define the total variation loss of the
roughness map r(x,y) as

Lrough = ∑
i, j
[|r(i+1, j)− r(i, j)|+ |r(i, j+1)− r(i, j)|], (5)

where r(i, j) denotes the value of the (i, j)-th texel of the roughness
map.

5 RELIGHTING AND COMPOSITION OF RADIANCE FIELDS

5.1 Differential Rendering
Our method is inspired by differential rendering, which is intro-
duced by Debevec [10] and previously applied in AR and MR
to seamlessly integrate virtual objects into the images of the real
scenes. The geometry, materials, and light sources of the real scene
are modeled in advance. At runtime, we render the modeled real
scene to obtain a rendering result Lreal. Then we insert the virtual
objects into the modeled real scene and render the mixed scene to
acquire another rendering result Lmixed. The composition result can
be obtained by superposing the difference between the two render-
ing results ∆L = Lmixed−Lreal, which represents the change in the
outgoing radiance introduced by the inserted virtual objects onto
the image of the real scene. Finally, the outgoing radiance of the
final composition image Lfinal can be expressed as

Lfinal = M⊙Lmixed +(1−M)⊙ (Lcam +Lmixed−Lreal), (6)

where Lcam is the radiance from the camera image of the real scene,
M is the mask of the inserted virtual objects, and ⊙ denotes the
element-wise product.

Differential rendering can reduce the impact of the material esti-
mation error of the real scene because the estimated materials only
affect the change in illumination introduced by the virtual objects.
Since the radiance change is lower than the outgoing radiance itself,
the error can be suppressed.

5.2 Relighting of Radiance Fields
To relight an object, we can obtain the geometry and materials of
the object and render it under another lighting condition. However,
it is difficult to represent the materials of an object using a radiance
field, and physically-based rendering of the radiance field under an-
other lighting condition in real-time is also hard to achieve.

Fortunately, differential rendering can provide us with an ap-
proach to relight an object. We can compute the change in illumina-
tion between different lighting conditions and superpose the change
on the original radiance field to relight a radiance field. Given a ra-
diance field R and its proxy mesh P , along with the new lighting
condition E ′ and the estimated original light condition of the radi-
ance field Ê , the relit radiance of R under E ′ can be approximated
by

L̂E ′
R = LE

R+LE ′
P −LÊ

P , (7)

where LE
R is the outgoing radiance of R under the original lighting

condition E , LE ′
P is the rendering result of P under E ′, and LÊ

P is
the rendering result of P under Ê . From Eq. (7) we can see that
E , LE ′

P and LÊ
P should be rendered to compute the difference, and

the proxy mesh along with the SVBRDFs and the original lighting
condition of the radiance field should be modeled and estimated to
relight the radiance field under a new lighting condition.

5.3 Composition of Radiance Fields
As for the composition of radiance fields, we consider three differ-
ent scenarios as follows:

Inserting Mesh Models into a Radiance Field Scene In-
serting mesh models into a scene represented by a radiance field can
be seen as an AR scenario that inserts mesh models into an image.
The outgoing radiance from the radiance field needs to be adjusted
according to the inserted models, which can be achieved by differ-
ential rendering. Given N mesh models {Mi}(i = 1,2, . . . ,N) to be
inserted into the radiance field R, the composition result L̂E

R+∑Mi
can be expressed as

L̂E
R+∑Mi

= M⊙LÊ
P+∑Mi

+(1−M)⊙ (LE
R+LÊ

P+∑Mi
−LÊ

P ),
(8)
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where M is the mask of {Mi}, LÊ
P+∑Mi

is the rendering result
of the proxy mesh P of R along with {Mi} under the estimated
lighting condition Ê , and LÊ

P is the rendering result of P under Ê .
From Eq. (8) we can see that LÊ

P+∑Mi
and LÊ

P should be computed
to adjust the outgoing radiance of R to seamlessly integrate {Mi}
into R.

Inserting Radiance Fields into a Radiance Field Scene If
we insert radiance fields into a scene represented by a radiance field
or mesh models, the inserted radiance fields need to be relighted,
and the outgoing radiance of the scene needs to be adjusted as well.
Given N radiance fields {Ri}(i = 1,2, . . . ,N) to be inserted into a
radiance field R, the composition result L̂E

R+∑Ri
can be computed

by

L̂E
R+∑Ri

= ∑Mi⊙ L̂E
Ri

+(1−M)⊙ (LE
R+LÊ

P+∑Pi
−LÊ

P ), (9)

where Mi is the mask of Ri, M is the mask of {Ri}, LÊ
P+∑Pi

is
the rendering result of the proxy mesh P of R along with the proxy
meshes {Pi} of {Ri} under the estimated lighting condition Ê , LÊ

P
is the rendering result of P under Ê , and L̂E

Ri
is the relit result of

Ri under E that can be computed by

L̂E
Ri

= LEi
Ri

+LÊ
P+∑Pi

−LÊi
Pi
, (10)

where LEi
Ri

is the outgoing radiance of Ri and LÊi
Pi

is the rendering
result of Pi under the estimated lighting condition Êi of Ri.

Inserting Radiance Fields into a Mesh Scene If we insert
radiance fields {Ri} into a scene represented by mesh models M,
the composition result L̂E

M+∑Ri
is

L̂E
M+∑Ri

= ∑Mi⊙ L̂E
Ri

+(1−M)⊙LÊ
M+∑Pi

, (11)

where LÊ
M+∑Pi

is the rendering result of M along with the proxy
meshes {Pi} of {Ri} under Ê , and L̂E

Ri
is the relit result of Ri

under E that can be computed by

L̂E
Ri

= LEi
Ri

+LÊ
M+∑Pi

−LÊi
Pi
. (12)

5.4 A Unified Relighting and Composition Equation
We can put Eq. (7) to Eq. (11) into a unified equation to relight and
composite radiance fields and mesh models under a new lighting
condition E ′ as

L̂E ′
R+∑Ri+∑M j

= ∑Mi⊙ L̂E ′
Ri

+M{ j}⊙LE ′
P+∑Pi+∑M j

+(1−M)⊙ (LE
R+LE ′

P+∑Pi+∑M j
−LÊ

P ),
(13)

where Mi is the mask of Ri, M{ j} is the mask of {Mi}, M is the
mask of {Ri} and {Mi}, and L̂E ′

Ri
is the relit result of Ri under E ′

that can be expressed by

L̂E ′
Ri

= LEi
Ri

+LE ′
P+∑Pi+∑M j

−LÊi
Pi
. (14)

In our work, we use path tracing, an unbiased rendering tech-
nique that can produce photorealistic rendering results, to achieve
differential rendering. In differential path tracing, we classify the
pixels of the rendered image into three categories: radiance field
as a scene, proxy meshes of the inserted radiance fields, and mesh
models. Different rendering strategies are applied to different cate-
gories, and the implementation details are described in Section 6.2.

However, the textures of a proxy mesh and its corresponding ra-
diance field may be different because the SVBRDFs of the proxy
mesh and the radiance field are trained with different methods. If
we use Eq. (13) to relight and composite radiance fields, the dif-
ference between texture details can overdarken and overbrighten
the results in the texture-rich region. In addition, the relighting
and composition results are sensitive to the estimation error of
SVBRDFs.

Fortunately, Eq. (6) can be rewritten under the assumption that
all surfaces are diffuse [33, 52]

Lfinal = M⊙Lmixed +(1−M)⊙ (Lcam
Emixed

Ereal
), (15)

where Ereal and Emixed are the irradiance before and after inserting
the virtual objects. We find that Eq. (15) can be also applied to
non-diffuse surfaces. Hence, Eq. (6) can be written as

Lfinal = M⊙Lmixed +(1−M)⊙ (Lcam
Lmixed

Lreal
), (16)

in which we use the radiance ratio instead of the radiance difference
to adjust the outgoing radiance of the real scene. With Eq. (16), we
can rewrite Eq. (13) as

L̂E ′
R+∑Ri+∑M j

= ∑Mi⊙ L̂E ′
Ri

+M{ j}⊙LE ′
P+∑Pi+∑M j

+(1−M)⊙ (LE
R

LE′
P+∑Pi+∑M j

LÊ
P

),
(17)

and Eq. (14) can be rewritten as

L̂E ′
Ri

= LEi
Ri

LE′
P+∑Pi+∑M j

LÊi
Pi

. (18)

Another issue that should be noticed is that since LÊ
P acts as the

denominator in Eq. (17), the result can be invalid when LÊ
P is close

to zero, which can be caused by Monte Carlo noise of path trac-
ing or the near-zero values of one or more channels of the base
color. To avoid this problem, we can demodulate the base color
and then denoise the numerator and denominator separately before
dividing. Demodulating the base color before denoising can also
prevent blurring the high-frequency texture details.

5.5 Post Processing
With differential rendering, we can obtain the change in illumi-
nation. However, since differential rendering is performed on the
proxy meshes, the spatial frequencies of the radiance change are
high at the boundaries of the meshes, which leads to aliasing ar-
tifacts in the relighting and composition results. To suppress the
aliasing, we should reduce the spatial frequency of the radiance
change to match the spatial frequency of the radiance fields.

We use a simple approach to reduce the spatial frequency of the
radiance change. We just blur the rendering results with a small
kernel after denoising and before computing the ratio, most of the
artifacts can be suppressed by this blur operation. It should be noted
that only the pixels belonging to radiance fields should be blurred,
the pixels belonging to the mesh models should be kept unchanged.

6 REAL-TIME RENDERING PIPELINE

We implement our real-time rendering pipeline using the Vulkan
API with the support of hardware-accelerated ray tracing. As men-
tioned in Section 3, the real-time rendering pipeline can be divided
into three stages: rendering radiance fields, differential rendering,
and post processing.
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6.1 Radiance Field Rendering
We use 3DGS to represent the radiance field in our implementa-
tion because 3DGS can achieve real-time rendering while main-
taining high quality novel view synthesis. We do not use PGSR in
the proxy mesh generation stage because its novel view synthesis
performance is lower than the vanilla 3DGS, which also affects the
relight performance in our method. Since our rendering pipeline is
built upon a graphics API, we leverage the graphics pipeline instead
of the tile-based software rasterizer in the original 3DGS paper [24]
to render the 3DGS, which is similar to the 3DGS renderer imple-
mented by Unity [40].

6.2 Differential Rendering
The stage of differential rendering includes two passes: G-buffer
generation and differential path tracing. In the G-buffer generation
pass, apart from depths, normals, motion vectors, and material pa-
rameters, we also store the object indices to identify the category
of pixels it belongs to. The G-buffer can also be regarded as the
primary hits in the following path tracing pass, and the depth test
of mesh models and radiance fields is also accomplished in the G-
buffer generation pass using the proxy meshes. In the differential
path tracing pass, ray query is performed in the fragment shader to
implement differential path tracing. Next event estimation (NEE)
is employed to directly sample the environment map, and MIS with
the balance heuristic [49] is applied to combine BRDF sampling
and environment map sampling, and an alias table is built for the
environment map to importance sample it. An individual environ-
ment map is associated with a radiance field inserted into the scene,
and we use the object indices in the G-buffer to determine which
environment map should be used to represent the original lighting
condition and determine whether the fragment belongs to a radiance
field as the scene, an inserted radiance field, or a mesh model. For
the pixels belonging to the mesh models, we only need to perform
path tracing once. For the pixels belonging to radiance fields, two
path tracings should be conducted to compute the radiance change,
and we store the random seeds used by the first path tracing at pri-
mary hits and reuse them in the second path tracing, so the variance
in direct illumination under the same environment map can be fully
eliminated. For the radiance field as a scene, the proxy mesh for G-
buffer generation and path tracing is the same. Otherwise, for the
radiance field as an object to be inserted into the scene, the proxy
mesh for G-buffer generation only contains the object in the scene
we want to insert, but the proxy mesh for path tracing (acceleration
structure) must be the whole scene because the surrounding geom-
etry may block or bounce light from the environment map. Finally,
we demodulate the base color for the following denoising. The
pseudocode of our differential path tracing is given in Algorithm 1,
where NEE and MIS are omitted for clarity.

6.3 Post Processing
The post processing stage consists of a denoising pass and a com-
position pass. In the denoising pass, a cross-bilateral filter with the
weight functions considering depth and normal is applied to de-
noise the two demodulated radiance maps computed by differential
path tracing. We remodulate the base color after denoising for the
pixels belonging to meshes. In the composition pass, we first apply
the spatial Gaussian filter with a small kernel to the two radiance
maps and then compute the radiance ratio to modulate the outgoing
radiance of radiance fields.

7 EXPERIMENTS

7.1 Training Details
In the first stage of inverse rendering, the weight for the normal
prior loss Lnormal is set to 0.15 and the weight for the binary cross-
entropy loss LO is set to 0.05 in PGSR. After acquiring the mesh
models via PGSR, we decimate the mesh models to 500 k triangles

Algorithm 1: Differential path tracing for relighting and
composition of radiance fields

Input: proxy mesh of the radiance field as a scene P , proxy
meshes of the inserted radiance fields {Pi}, proxy
meshes of the radiance fields where {Pi} are
extracted from {P0

i }, inserted mesh models {M j},
new environment map E ′, original environment map
of the radiance field Ê , original environment maps of
the inserted radiance fields {Êi}, surface point x

Output: outgoing radiance under E ′, Ê , and {Êi}
// Render under the new environment map

1 for k← 1 to maxBounces do
2 sample the BRDF in direction ωi
3 trace ray (xk,ωi) against P+∑Pi +∑M j
4 if (xk,ωi) does not hit the scene then
5 accumulate E ′ in ωi
6 break
7 end
8 end
// Render under the original environment maps

9 if x does not belongs to {M j} then
10 i← index of {Pi} that x belongs to
11 for k← 1 to maxBounces do
12 sample the BRDF in direction ωi
13 if path vertex xk belongs to P then
14 trace ray (xk,ωi) against P
15 else
16 trace ray (xk,ωi) against P0

i
17 end
18 if (xk,ωi) does not hit the scene then
19 if path vertex xk belongs to P then
20 accumulate Ê in ωi
21 else
22 accumulate Êi in ωi
23 end
24 break
25 end
26 end
27 end

using quadric error metrics, and then we use Blender [5] to generate
the texture atlas of the mesh model. Then we use Mitsuba 3 [20],
a physically-based differentiable renderer, to optimize the HDR en-
vironment map and the SVBRDFs of the scene. In Mitsuba 3, we
use the path replay backpropagation integrator with 32 samples per
pixel (spp), and the longest path depth is set to infinity. The resolu-
tions of the base color map, roughness map, and environment map
are 4090×4096, 2048×2048, and 256×128, respectively. The ini-
tial values of the environment map and the base color map are set
to 0.5, and the initial roughness is set to 0.8. We randomly pick an
image from the training set of images for each iteration, and 5000 it-
erations are performed in total. We use the Adam optimizer with an
initial learning rate of 0.005 for the base color, roughness, and envi-
ronment map. We set λbasecolor to 0.02 and λrough to 0.01 in Eq. (3).
And λlight in Eq. (3) to 0.001. We use a computer equipped with
an Intel Core i7-13700K CPU with 32 GB RAM and an NVIDIA
GeForce RTX 4080 GPU with 16 GB VRAM in our experiments to
generate proxy meshes and perform real-time rendering.

7.2 Relighting Performance
We use TENSOIR [23] and SYNTHETIC4RELIGHT [64] datasets
to evaluate the relighting performance of our method. In differ-
ential path tracing, 128 spp are used, 64 for BRDF sampling and
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Table 1: Quantitative comparison of relighting results on TENSOIR
dataset. Our method outperforms all the baselines.

Method PSNR ↑ SSIM ↑ LPIPS ↓ Time ↓
NeRFactor [63] 23.38 0.908 0.131 >100 h
InvRender [64] 23.97 0.901 0.101 15 h
TensoIR [23] 28.58 0.944 0.081 5 h
GS-IR [27] 24.37 0.885 0.096 <1 h
GI-GS [9] 24.70 0.886 0.106 <1 h
IRGS [15] 30.64 0.935 0.076 <1 h
Ours 32.40 0.958 0.049 <1 h
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Figure 4: Qualitative comparison of relighting results under different
environment maps on TENSOIR dataset.

the other 64 for environment map sampling (NEE). The maximum
number of bounces is unlimited, and Russian roulette is applied af-
ter 5 bounces to terminate a path. Edge-aware spatial denoising is
applied to the rendering results to reduce the noise. The window
size of the spatial denoiser is set to 9. To mitigate the inherent am-
biguity between the estimated albedo and lighting, we follow the
previous works [27, 9, 15] to scale each RGB channel of the base
color map by a global scalar according to the ground truth.

The training process takes∼40 minutes for geometry reconstruc-
tion and ∼10 minutes for SVBRDF estimation. We report PSNR,
SSIM, and LPIPS metrics and compare them to the inverse render-
ing baselines based on radiance fields. It should be noted that we
use the official implementations of R3DG [13] and IRGS [15] to
generate the results, which slightly differ from the reported results
in the original papers. The quantitative comparisons in Tab. 1 and
Tab. 2 demonstrate that our method has the best relighting perfor-
mance in terms of all metrics while the training time is acceptable.
We also provide the qualitative comparisons on the two datasets in
Fig. 4 and Fig. 5. We can see that our method can produce realistic
relighting results. Compared to the baselines, the specular reflec-
tions of our method are more accurate.

7.3 Real-Time Relighting and Composition
To achieve real-time performance, we use 2-spp path tracing, and
temporal denoising with a history length of 20 is applied to reduce
the noise. The resolution of all rendered images is 1920×1080.
We show the relighting and composition results in the GARDEN,
KITCHEN, and ROOM from the MIP-NERF 360 dataset [2], and the
TRUCK and FAMILY from the TANKS AND TEMPLES dataset [25].

Table 2: Quantitative comparison of relighting results on SYN-
THETIC4RELIGHT dataset. Our method outperforms all the baselines.

Method PSNR ↑ SSIM ↑ LPIPS ↓ Time ↓
NeRFactor [63] 21.54 0.875 0.171 >48 h
InvRender [64] 28.67 0.950 0.091 14 h
TensoIR [23] 29.69 0.951 0.079 3 h
GS-IR [27] 25.40 0.924 0.083 <1 h
R3DG [13] 32.82 0.967 0.052 <1 h
GI-GS [9] 27.36 0.945 0.070 <1 h
IRGS [15] 34.80 0.963 0.056 <1 h
Ours 35.63 0.976 0.040 <1 h
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Figure 5: Qualitative comparison of relighting results under different
environment maps on SYNTHETIC4RELIGHT dataset.

The training process takes ∼2 hours for geometry reconstruction
and 0.5∼2 hours for material estimation, depending on the com-
plexity of a scene and the resolution of images. We extract the vase
from the GARDEN and the statue from the FAMILY as the radiance
fields to be inserted into scenes represented by radiance fields or
mesh models. We also insert two mesh models, BUNNY (144 k
triangles) and TEAPOT (15.7 k triangles) [32], into these scenes.
Additionally, we use AMAZON LUMBERYARD BISTRO (4 M tri-
angles) [1] as a scene represented by meshes to insert these mesh
models and radiance fields into.

Fig. 6 gives the rendering results of the naı̈ve composition and
our method in the scenes represented by radiance fields (GARDEN,
KITCHEN, ROOM, TRUCK, and FAMILY) and the scene represented
by meshes (AMAZON LUMBERYARD BISTRO). Since the naı̈ve
composition does not consider the radiance change of inserted radi-
ance fields and the inter-object effects such as the shadows cast on
the scenes and the glossy interreflections, all inserted objects seem
to float in the air, and the appearances of the inserted radiance fields
do not match the scenes. Our method makes the radiance fields re-
lightable and captures the inter-object effects including glossy in-
terreflections.

The timing breakdown of our real-time rendering method in
these scenes is provided in Tab. 3. All measured timings are av-
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Table 3: Timing breakdown in ms of the real-time rendering pipeline

Scene
Render radiance fields Differential rendering Post processing

Total
Preprocess Sort Splat Gaussians G-buffer Path tracing Denoise Composite

GARDEN 0.59 0.98 2.59 0.35 3.75 0.72 0.16 9.14
KITCHEN 0.24 0.40 3.29 0.40 3.93 0.75 0.16 9.17

ROOM 0.22 0.23 2.97 0.35 8.23 0.76 0.15 12.91
TRUCK 0.31 0.34 3.12 0.31 3.69 0.57 0.18 8.52
FAMILY 0.26 0.29 2.60 0.26 2.53 0.51 0.17 6.62
BISTRO 0.04 0.15 0.36 0.83 8.55 0.78 0.15 10.86

Naı̈ve composition Our method

G
A

R
D

E
N

K
IT

C
H

E
N

R
O

O
M

T
R

U
C

K
FA

M
IL

Y
B

IS
T

R
O

Figure 6: Rendering results in the scenes represented by radi-
ance fields (GARDEN, KITCHEN, ROOM, TRUCK, and FAMILY) and
the scene represented by meshes (AMAZON LUMBERYARD BISTRO).
Left: Naı̈ve radiance field composition method without considering
the inter-object effects and relighting of radiance fields themselves
lacks realism. Right: our method, which simulates a full global illumi-
nation solution through path tracing, can relight the inserted radiance
fields, capture glossy interreflections, and achieve photorealistic ren-
dering.

Table 4: Ablation studies on different components of our method on
TENSOIR and SYNTHETIC4RELIGHT datasets.

TENSOIR [23] SYNTHETIC4RELIGHT [64]
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Mesh only 31.49 0.937 0.074 34.63 0.955 0.060
Difference 31.78 0.947 0.060 34.66 0.966 0.050
w/o blur 32.19 0.954 0.053 35.42 0.975 0.041
Full 32.40 0.958 0.049 35.63 0.976 0.040

Mesh only Difference w/o blur Full

Figure 7: Ablation studies on different components of our method.

eraged over 100 frames. From the timings, we can see that the
most time-consuming steps are the splatting of the Gaussians and
path tracing. The time to splat Gaussians depends on the number
of visible Gaussians in the viewport. Therefore, the BISTRO scene
takes less time than other scenes to splat Gaussians because only
the vase and the statue are rendered. The ROOM scene takes more
time in path tracing than other scenes represented by radiance fields
because the environment lighting is partially blocked by the ceiling,
which increases the path length in path tracing. The BISTRO scene
takes the longest time in G-buffer generation and path tracing be-
cause the triangle count is higher than that of any other scene.

7.4 Ablation Study
We conduct ablation studies on different components of our method
to evaluate their influences on the relighting performance. The met-
rics on TENSOIR and SYNTHETIC4RELIGHT datasets are provided
in Tab. 4 and the visual comparisons are given in Fig. 7. From
Tab. 4 and Fig. 7 we can see that differential rendering can improve
the relighting performance compared to only using meshes (”mesh
only”). From the comparison of the rendering results using Eq. (13)
(”difference”) and Eq. (17) (”full”), we can see the overdarkening
and overbrightening effects in ”difference,” and this overdarkening
and overbrightening are eliminated in ”full”, and the quantitative
metrics of ”full” are also better than those of ”difference” in Tab. 4.
From the comparison of unblurred (”w/o blur”) and blurred (”full”)
results, we can see that the high-frequency aliasing eliminates after
blurring, and the scores also improve in Tab. 4.

Triangle Count We analyze the impact of the triangle count of
the proxy mesh on the relighting performance. We decimate the
proxy meshes into 4 k, 20 k, 100 k, 500 k, and 2.5 M, respectively.
The PSNR, SSIM, LPIPS, and average rendering times are reported
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Table 5: Ablation on the triangle count of the proxy mesh on TENSOIR
and SYNTHETIC4RELIGHT datasets.

Tris. TENSOIR [23] SYNTHETIC4RELIGHT [64] Rendering
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ time (ms) ↓

4 k 31.388 0.9493 0.0574 34.775 0.9744 0.0422 15.99
20 k 32.097 0.9540 0.0528 35.509 0.9760 0.0403 18.91
100 k 32.171 0.9563 0.0504 35.637 0.9763 0.0398 21.82
500 k 32.395 0.9576 0.0490 35.630 0.9762 0.0398 24.14
2.5 M 32.388 0.9580 0.0486 35.637 0.9761 0.0398 29.14
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Figure 8: Qualitative comparison of different triangle counts of the
proxy meshes.

in Tab. 5, and we also show the proxy meshes visualized by the
normal maps, the relighted proxy meshes, and the relighting results
of our method in Fig. 8. From Tab. 5 and Fig. 8 we can observe
that an extremely low triangle count leads to poor relighting results,
but the improvement is marginal when the triangle count is high
enough. Furthermore, more triangles consume more time to render.

Sample Count We also investigate the influence of the sample
count on the relighting performance. We provide the relighting re-
sults of 16, 32, 64, 128, and 256 spp, respectively. The error metrics
and the average rendering times are given in Tab. 6 and the visual
comparisons are shown in Fig. 9. From Tab. 6 and Fig. 9 we can see
that increasing spp can improve the rendering quality, but the ren-
dering time also increases. Since the improvement from 128 spp to
256 spp is marginal, we use 128 spp in our previous experiments.

8 LIMITATIONS AND FUTURE WORK

Complex Materials Due to the use of the isotropic SVBRDF
model based on GGX distribution in inverse rendering, we only
support opaque objects and cannot handle anisotropic BRDFs, sub-
surface scattering, or translucency. Due to the use of a hybrid ren-
dering pipeline based on G-buffer, transparent or translucent objects
cannot be directly inserted, but we can render transparent objects in
a separate pass or use a full ray tracing pipeline to render the opaque
and transparent objects simultaneously.

More Accurate Inverse Rendering Since we use proxy
meshes with the estimated SVBRDFs and environment maps to
compute the radiance change in differential rendering, the relight-
ing and composition results are affected by the performance of in-
verse rendering. Although we eliminate the error in direct illumina-
tion introduced by base color by Eq. (16) and Eq. (18), the estima-
tion error of base color also affects indirect illumination. Now the
quality of reconstructed geometries is not very high, and ambigui-
ties still exist in the estimated SVBRDFs and environment maps. In
the future, more advanced geometry and material estimation meth-
ods may increase the resolution and accuracy of inverse rendering
and improve the quality of our method.

Table 6: Ablation on the sample count when relighting on TENSOIR
and SYNTHETIC4RELIGHT datasets.

spp TENSOIR [23] SYNTHETIC4RELIGHT [64] Rendering
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ time (ms) ↓

16 32.234 0.9547 0.0547 35.433 0.9737 0.0460 4.88
32 32.323 0.9562 0.0519 35.543 0.9751 0.0428 7.80
64 32.371 0.9571 0.0501 35.602 0.9758 0.0408 13.49
128 32.395 0.9576 0.0490 35.630 0.9762 0.0398 24.14
256 32.407 0.9578 0.0484 35.643 0.9764 0.0393 45.96

16 spp 32 spp 64 spp 128 spp 256 spp

Figure 9: Qualitative comparison of the relighting results using differ-
ent sample counts.

Non-Distant Environment Light Sources We assume distant
environment lighting, so we use the environment map as the light
source of the scene. Although environment maps are very efficient
for rendering, this assumption is not accurate in most real-world
scenes, which may introduce estimation error in SVBRDFs or ren-
dering error in relighting and composition. Several recent works
use NeILF [56], NeRF [28, 65, 58] or both of them [61] to repre-
sent the non-distant environment light sources, but the inference of
neural networks is time-consuming. Modeling the incident radiance
of the non-distant environment light source in a more accurate way
while keeping fast rendering should be investigated in the future.

Inserting Animated Radiance Fields Now we use the origi-
nal 3DGS model in our experiments, so we only support static ra-
diance fields. Animated radiance field models such as HiFi4G [21]
are impressive to represent humans or animals, which can be inte-
grated into our method to support animated radiance fields.

9 CONCLUSION

In this work, we propose a physically-based method to relight and
composite radiance fields in real-time. We first generate proxy
meshes with SVBRDFs and environment maps for the scenes us-
ing differentiable rendering. Then a unified differential rendering
framework using hardware-accelerated ray tracing is performed on
the proxy meshes to compute the radiance change introduced by the
new lighting condition or the inserted radiance fields. Furthermore,
our unified framework also supports compositing mesh models with
radiance fields. Results demonstrate that our method can achieve
photorealistic relighting and composition at real-time frame rates.

It should be noted that our method is not limited to relighting
and composition of 3DGS. Although we use 3DGS as the radiance
field in our implementation, the main components of our method
are not directly related to 3DGS. We use 3DGS to represent the ra-
diance field in this work mainly because the reconstruction quality
and rendering efficiency of 3DGS are both very high. Additionally,
since our method can achieve realistic scene synthesis, our method
may potentially be misused in the context of manipulated media.
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