
Eurographics Symposium on Rendering (DL-only Track) (2022)
A. Ghosh and L.-Y. Wei (Editors)

Precomputed Discrete Visibility Fields for Real-Time Ray-Traced
Environment Lighting

Yang Xu1 , Yuanfa Jiang1 , Chenhao Wang1, Kang Li†1 , Pengbo Zhou2, and Guohua Geng1

1School of Information Science and Technology, Northwest University, Xi’an, China
2School of Arts and Communication, Beijing Normal University, Beijing, China

Figure 1: Rendering results of ray-traced environment lighting with our proposed precomputed discrete visibility fields. Left: Crytek Sponza
(262 K triangles), 128 spp, 15.74 ms. Right: Amazon Lumberyard Bistro (2.8 M triangles), 64 spp, 33.67 ms.

Abstract
Rendering environment lighting using ray tracing is challenging because many rays within the hemisphere are required to be
traced. In this work, we propose discrete visibility fields (DVFs), which store visibility information in a uniform grid to speed up
ray-traced low-frequency environment lighting for static scenes. In the precomputation stage, we compute and store the visibility
and occlusion masks at the positions of the point samples of the scene using octahedral mapping. The visibility and occlusion
masks of the point samples inside a grid cell are then merged by the logical OR operation. We also store the occlusion label
indicating whether more than half of the pixels are occluded in the occlusion mask of each grid cell. At runtime, we exclude the
rays occluded by the geometry or visible to the environment according to the information stored in the DVF. Results show that
the proposed method can significantly speed up the rendering of ray-traced environment lighting and achieve real-time frame
rates without sacrificing image quality. Compared to other environment lighting rendering methods based on precomputation,
our method is free of tessellation or parameterization of the meshes, and the precomputation can be finished in a short time.

CCS Concepts
• Computing methodologies → Rendering; Ray tracing;

1. Introduction

Environment lighting in the scene can significantly enhance the re-
alism of rendered images. The key to rendering environment light-
ing is evaluating the visibility function, which can be acquired by
shadow mapping [Wil78] or ray tracing [Whi80]. However, many

† Corresponding author: likang@nwu.edu.cn

shadow maps or rays are required to be created or traced because
the environment light sources are distributed over the entire sphere
or hemisphere, which makes rendering environment lighting at
real-time frame rates challenging.

In recent years, hardware-accelerated ray tracing [NVI18] has
been introduced to significantly improve the efficiency of ray trac-
ing. However, the performance is still not able to meet the require-

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

https://orcid.org/0000-0002-3494-7222
https://orcid.org/0000-0003-4570-4901
https://orcid.org/0000-0001-6218-5715
https://orcid.org/0000-0002-4234-2119


Yang Xu et al. / Precomputed Discrete Visibility Fields for Real-Time Ray-Traced Environment Lighting

ment for rendering high-quality environment lighting in real-time.
In most cases, noisy rendering results with a small number of ray
samples are generated and then filtered by a spatiotemporal de-
noiser [SKW∗17, FWHB21, IMF∗21] to obtain the final results.
However, since most denoisers exploit temporal reuse of the render-
ing results from previous frames, the newly visible or disoccluded
pixels may become noisy when the camera is moving because tem-
poral reprojection fails and the accumulated samples are insuffi-
cient. Besides, fast moving lights can also lead to lag or noise.
Ray tracing can also be accelerated by caching visibility on the
surface [CAM08a, PGSD13] or in a 3D grid [GEE20].

If the scene and environment are both static, lightmaps or ir-
radiance volumes [GSHG98] can be precomputed to render envi-
ronment lighting in real-time. A lot of previous works precomputed
data for real-time environment lighting under dynamic environment
lighting. The precomputed data on the surface can be either stored
as vertex attributes [SKS02], texture atlases [JKG16], or scattered
point samples [LZT∗08]. The meshes should be tessellated, and
the resolution of the textures or the point samples should be high
enough to capture the lighting details, which requires both long pre-
computation time and large memory storage. Otherwise, the quality
of the rendered image may degrade. Additionally, parameterization
of complex models may cause artifacts in detailed geometries due
to discontinuities.

In this work, we present a method to render low-frequency
dynamic environment lighting at real-time frame rates for static
scenes. We propose a data structure called discrete visibility field
(DVF), which stores visibility and occlusion masks in a uniform
grid along with occlusion labels to determine whether the visible or
occluded regions should be traced at runtime. The field is discrete
because we do not interpolate the data from different grid cells. In
the preprocessing stage, we generate point samples on the scene
geometry, shoot rays from the positions of the point samples, and
store the occlusion information using octahedron mapping. A uni-
form grid is constructed for the whole scene, and we merge the vis-
ibility and occlusion masks inside a grid cell by the logical OR op-
eration. Besides, the occlusion label indicating whether more than
half of the pixels are occluded in the occlusion mask is also stored
in each grid cell. At runtime, we first locate the grid cell by the
fragment position and fetch the occlusion label. If the occlusion la-
bel is 1, we trace rays in the visible region of the visibility mask
and discard the unnecessary rays occluded by the geometry. Oth-
erwise, we trace in the occluded region of the occlusion mask and
exclude the rays visible to the environment. Rendering times can
be significantly reduced without sacrificing image quality.

Compared to traditional ray tracing without DVFs, our method
can produce comparable results because we just discard the unnec-
essary rays by the DVF. Therefore, the lighting details can be fully
captured. Besides, our proposed method is volume-based instead
of surface-based, which means it is free of tessellating the meshes
or generating texture atlases for complex models. Additionally, the
precomputation time of our method is short compared to other pre-
computed environment lighting methods, and the memory footprint
of the precomputed data is small.

Our contributions of this work are as follows:

• A volume-based data structure called discrete visibility field stor-

ing visibility and occlusion masks in a uniform grid along with
occlusion labels to determine whether visible or occluded re-
gions should be traced.

• A DVF precomputation method by creating visibility and occlu-
sion masks at the positions of the point samples of the scene and
merging the masks inside a grid cell by the logical OR operation.

• A runtime rendering algorithm with the precomputed DVFs to
speed up ray-traced environment lighting by discarding the un-
necessary rays according to the visibility information from the
DVFs during ray tracing.

2. Related Work

Precomputed Environment Lighting. Lightmaps storing the in-
coming irradiance in texture atlases are the most commonly used
techniques to render environment lighting in practice, but dynamic
environment lighting is not supported. Sloan et al. [SKS02] pre-
sented precomputed radiance transfer (PRT), which supports dy-
namic environment light sources by precomputing spherical har-
monics (SH) transfer vectors that map the SH vector of the en-
vironment map to the outgoing radiance. Sloan et al. [SHHS03]
compressed the PRT data by clustered principal component analy-
sis (CPCA) to both reduce the memory footprint and the rendering
cost. Finite element methods such as radiosity can be utilized to
render environment lighting. Light transport paths [JKG16] repre-
senting the form factors in radiosity are precomputed to achieve
real-time environment lighting. However, both PRT and radios-
ity need to tessellate or parameterize the meshes to capture light-
ing details. The surface elements can also be represented by scat-
tered points [LZT∗08], and the irradiance can be obtained by in-
terpolating the points. Besides, volume-based representation can
be adopted for precomputed lighting. Greger et al. [GSHG98] pro-
posed irradiance volumes storing incoming irradiance in the probes
placed at the positions of grid cells and interpolating between the
probes at runtime. McGuire et al. [MMNL17] precomputed light
field probes storing the integrated incoming radiance at the lo-
cations of the probes and suppressed light leaking by the addi-
tional distance information in the probes. Seyb et al. [SSS∗20] pro-
posed local light grids which store additional self-visibility terms
at vertices to capture high-frequency lighting details. Zhou et al.
[ZHL∗05] precomputed shadow fields storing SH visibility vectors
in multiple cube maps at the sampled points around the dynamic
rigids.

Real-Time Environment Lighting without Precomputation.
Ritschel et al. [RGK∗08] presented imperfect shadow maps (ISMs),
which efficiently create low-resolution shadow maps for many vir-
tual point lights (VPLs) by point samples of the scene. Environment
lighting was supported by approximating the environment map
with VPLs. Barák et al. [BBH13] improved the temporal coherence
of ISM using Metropolis-Hastings sampling and proposed a fast
ISM creation method using GPU tessellation. Blocker accumula-
tion can be also adopted to approximate the visibility function. Ren
et al. [RWS∗06] used sphere blockers and accumulated visibility in
log-SH space by SH addition, and spherical harmonic exponenti-
ation (SHEXP) was performed on the accumulated log-SH vector
to obtain the SH visibility vector. Sloan et al. [SGNS07] splatted
sphere blockers onto the screen buffer to improve efficiency. Giraud

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.



Yang Xu et al. / Precomputed Discrete Visibility Fields for Real-Time Ray-Traced Environment Lighting

and Nowrouzezahrai [GN15] accumulated the visibility of dynamic
height fields in log-SH space and computed log-SH BRDF as well
to avoid costly triple-product integration.

Ray-Traced Environment Lighting. Szécsi et al. [SSSK04] com-
bined BRDF importance sampling with correlated sampling, which
analytically computes the radiance neglecting the visibility fac-
tor as the control variate to reduce the variance of rendering re-
sults of environment lighting. This method is also adopted in
our method when we trace the occluded region to evaluate the
occluded irradiance, which is then subtracted from the unshad-
owed irradiance to obtain the final incoming irradiance. All-
frequency environment maps can be importance sampled to re-
duce the variance by cumulative density function (CDF) inver-
sion [CRW09] or point relaxation [ARBJ03, KK03, ODJ04]. How-
ever, importance sampling of environment maps performs poorly
for highly glossy BRDFs. Multiple importance sampling proposed
by Veach and Guibas [VG95] can be used to combine BRDF
importance sampling with importance sampling of environment
maps. Rejection sampling [BGH05], resampled importance sam-
pling (RIS) [BGH05,TCE05], and wavelet-based importance sam-
pling [CJAMJ05,CAM08b] can be utilized to sample the product of
the BRDF and the environment map. Bitterli et al. [BWP∗20] pro-
posed reservoir-based spatiotemporal importance resampling (Re-
STIR) to perform RIS through spatial and temporal reuse of the
samples and weighted reservoir sampling, which allows real-time
rendering of environment lighting. Denoisers based on temporal
reprojection and accumulation [SKW∗17, FWHB21, IMF∗21] are
adopted in real-time ray tracing to filter the rendering results with
a low sample rate.

Visibility Caching for Ray Tracing. Clarberg [CAM08a] ex-
ploited the visibility correlation to compute and store visibility
maps at sparse locations on the surface, and interpolated these visi-
bility maps to obtain visibility approximations as control variates to
lower the variance of ray-traced direct environment lighting. Popov
et al. [PGSD13] shared the cached visibility inside the cluster with
similar orientations to discard most of the shadow rays. The visibil-
ity caches are generated on-the-fly and stored in a hash map. Inter-
active frame rates can be achieved with noticeable quality degrada-
tion. Guo et al. [GEE20] precomputed and cached voxel-to-voxel
visibility in a matrix-like map. Unnecessary visibility tests can be
discarded in unidirectional path tracing to acquire comparable ren-
dering results with fewer shadow-ray queries and lower rendering
time.

Potentially Visible Set. Our precomputed DVF shares some sim-
ilarities with potentially visible set (PVS) [ARB90, TS91], such
as partitioning the scene into grid cells and shooting rays from
the point samples inside a cell to evaluate from-region visibility.
However, PVS stores the geometries potentially visible to the grid
cell while our DVF stores the visible and occluded directions us-
ing octahedral mapping in the grid cell. A conservative PVS can
be obtained by occluder fusion [SDDS00] or extended projection
[DDTP00]. Wonka et al. [WWS00] calculated PVS for each point
sample on the boundary of the view cell and fuse the PVSs in a view
cell by occluder shrinking to obtain the conservative PVS for the
view cell, which is similar to merging masks inside a grid cell by
the logical OR operation in our method. Bittner et al. [BMW∗09]

proposed a mutation-based adaptive sampling strategy by exploit-
ing the spatial coherence of visibility to reduce the precomputation
cost of the PVS.

3. Method

The overview of our proposed method, containing both precompu-
tation and runtime stages, is shown in Figure 2. In the precomputa-
tion stage, we construct a uniform grid for the scene, sample points
on the surface geometry, create visibility and occlusion masks for
each point sample, merge the masks inside a grid cell of the DVF
by the logical OR operation, and compute the occlusion label for
each grid cell. At runtime, we index the grid cell by the position of
the surface point, determine whether to trace the visible region or
the occluded region by the occlusion labels in the DVF, and trace
rays inside the visible or occluded region to obtain the incoming
irradiance or the irradiance occluded by the scene geometry. In the
following subsections, we will describe our method in detail.

3.1. Discrete Visibility Fields

We define a discrete visibility field by a uniform grid. Each grid cell
of the uniform grid stores a visibility mask and an occlusion mask
as spherical functions. We define the visibility mask Vc of a grid
cell c as:

Vc(c,ω) =

{
1, if all points inside c is visible in direction ω,

0, otherwise,
(1)

and the occlusion mask Oc of a grid cell c as:

Oc(c,ω) =

{
1, if all points inside c is occluded in direction ω,

0, otherwise.
(2)

Each value in the masks represents whether all surface points in-
side the grid cell are visible to the environment or occluded by the
scene geometry in the corresponding direction. Additionally, a la-
bel which denotes whether more than half of the directions are oc-
cluded in the occlusion mask is also stored in each grid cell, which
can be used to determine whether the occluded rays or the visible
rays should be traced. The fields are discrete which means that we
do not interpolate the data across the grid cells of a DVF. In the
next subsection, we will introduce how to precompute the DVF for
a scene.

3.2. Precomputation of DVFs

Since each value in the masks of a grid cell in the DVF denotes
whether all surface points inside the grid cell are visible to the en-
vironment or occluded by the scene geometry in the corresponding
direction, we can precompute the DVF for a scene by the follow-
ing steps: sample points on the scene geometry, compute and store
the visibility and occlusion masks for the point samples, merge the
masks inside a grid cell by the logical OR operation, and compute
the occlusion label for each grid cell of the DVF. Next, we will go
through the precomputation process step by step.

Generate Point Samples of the Scene. The first step of precompu-
tation is to generate point samples on the scene geometry. The point

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.



Yang Xu et al. / Precomputed Discrete Visibility Fields for Real-Time Ray-Traced Environment Lighting

Figure 2: Overview of our proposed method. In the precomputation stage, sample points are generated on the surface geometry and a
uniform grid is constructed for the scene. Visibility and occlusion masks are created for each point sample, masks inside a grid cell of the
DVF are merged by the logical OR operation, and occlusion labels are computed for each grid cell. At runtime, the grid cell is indexed by
the position of the surface point, the occlusion labels in the DVF are used to determine whether to compute the incoming radiance or the
irradiance occluded by the scene geometry, and the unnecessary rays are excluded by the masks fetched from the DVF.

samples should lie on the surface of the meshes because only the
surface points are required to be shaded at runtime. The samples
should be dense enough to ensure that as many as possible surface
points are considered during precomputation. Position p and nor-
mal n of a point sample are both required because we trace rays
over the hemisphere about the surface normal in the next step of
precomputation.

Create Visibility and Occlusion Masks. Once the point samples
of a scene are obtained, we can create visibility and occlusion
masks of the point samples using ray tracing. The visibility mask
Vs of a point sample s = (p,n) can be expressed as:

Vs(s,ω) =

{
1, if sample s is visible in direction ω,

0, otherwise,
(3)

and the occlusion mask Op of a point sample s is defined as:

Os(s,ω) =

{
1, if sample s is occluded in direction ω,

0, otherwise.
(4)

To create these two masks, we first set all the values of the masks
to 0. Then we shoot a set of rays from the position of the point
sample over the hemisphere about the normal of the point sample.
If a ray does not intersect the scene geometry, we set the value
corresponding to the direction of the ray in the visibility mask as 1.
Otherwise, we set the value as 1 in the occlusion mask.

Merge Visibility and Occlusion Masks. We construct a uniform
grid for the whole scene to represent the DVF. The masks con-
taining the visibility information of the scene inside a grid cell are
merged into the grid cells of the DVF. For each point sample, we
find the grid cell that contains the point by the position of the point.
We traverse all the directions of the masks to merge the visibility
information of all point samples inside a grid cell. For each direc-
tion, the logical OR operation is performed on the visibility masks
of all point samples Vs(s1,ω),Vs(s2,ω), · · · ,Vs(sn,ω) inside a grid
cell c to obtain the visibility mask of the grid cell Vc(c,ω), which
can be expressed as:

Vc(c,ω) =Vs(s1,ω)∨Vs(s2,ω)∨·· ·∨Vs(sN ,ω), (5)

where ∨ denotes the logical OR operation, and N is the number
of point samples inside the grid cell c. The occlusion masks of
all point samples Os(s1,ω),Os(s2,ω), · · · ,Os(sn,ω) inside the grid
cell c can be merged to acquire the visibility mask of the grid cell
Oc(c,ω) in a similar way as follows:

Oc(c,ω) = Os(s1,ω)∨Os(s2,ω)∨·· ·∨Os(sN ,ω). (6)

Therefore, all possible visible directions and all possible occluded
directions of each grid cell can be obtained. Figure 3 gives the
schematic of merging masks inside a grid cell. To simplify the de-
scription, we only show the case of merging two masks. Three or
more masks can be merged in the same manner.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.



Yang Xu et al. / Precomputed Discrete Visibility Fields for Real-Time Ray-Traced Environment Lighting

Figure 3: Schematic of merging visibility and occlusion masks in-
side a grid cell. ∨ denotes the logical OR operation.

Compute Occlusion Labels. Once the visibility and occlusion
mask of each grid cell are obtained by merging the masks of the
point samples, we can compute the ratio of the number of occluded
directions to the total number of directions in the occlusion mask
of a grid cell as:

rocc(c) =
Nocc(c)

Nocc(c)+Nvis(c)
, (7)

where Nocc(c) denotes the number of occluded directions, and
Nvis(c) denotes the number of visible directions in the occlusion
mask of a grid cell c, respectively. Then we can compute the occlu-
sion label locc of a grid cell c as:

locc(c) =

{
1, rocc(c)> 0.5,
0, otherwise.

(8)

If the occlusion ratio rocc(c) is larger than 0.5, the occlusion label
locc(c) is set as 1, otherwise 0. The occlusion label is used to de-
termine whether the rays inside the visible region or the occluded
region need to be traced at runtime.

3.3. Rendering with Precomputed DVFs

To speed up ray-traced environment lighting by the precomputed
DVFs, we first locate the grid cell from the DVF by the position
of the surface point. The occlusion labels can be used to determine
whether the rays should be traced inside the visible region or the
occluded region. If the occlusion label is 1, we should trace the
rays in the visible region of the visibility mask of the grid cell.
Otherwise, only the rays in the occluded region of the occlusion
mask need to be traced. We only consider the direct illumination
of distant environment lighting and assume the scene materials are
diffuse in this work. The incoming irradiance E at the surface point
x can be expressed as:

E(x) =
∫

Ω+
Li(ωi)V (x,ωi)(n ·ωi)dωi, (9)

where ρd is the diffuse albedo, Li(ωi) is the incoming radiance from
the environment light source in direction ωi, V (x,ωi) is the visibil-
ity function between x and the environment, and n is the surface
normal. Monte Carlo ray tracing can be adopted to solve this in-
tegration. When we trace the rays inside the visible region, the in-
coming radiance from the environment light source is accumulated
to obtain E(x). However, if we trace the rays inside the occluded
region, we can only obtain the irradiance occluded by the scene
geometry, which is defined as:

Eocc(x) =
∫

Ω+
Li(ωi)O(x,ωi)(n ·ωi)dωi, (10)

where O(x,ωi) = 1−V (x,ωi) is the occlusion function between
x and the environment. Fortunately, we can subtract the occluded
irradiance Eocc(x) from the unshadowed irradiance Eunshad to ac-
quire E(x) as follows:

E(x) = Eunshad(n)−Eocc(x), (11)

where Eunshad(n) can be efficiently evaluated by querying the irra-
diance environment map in the direction of the surface normal n.

4. Implementation Details

4.1. Precomputation

We generate the point samples by randomly sampling the surface
mesh. Positions and normals are stored for the following precom-
putation steps. We use a CPU ray tracer to evaluate the visibility
function for creating the visibility and occlusion masks. We use the
octahedral parameterization [CDE∗14] which can map a spherical
function to a unit square with low distortion to represent the visi-
bility and occlusion masks. For each point sample, we create two
octahedral maps to store these two masks. According to Eq. (3), 1
denotes visible and 0 denotes occluded in the first map that stores
the visibility mask. Besides, 1 means occluded and 0 means visible
in the second map according to Eq. (4). To create the visibility and
occlusion masks, we first set all pixels of the two octahedral maps
to 0, and then shoot rays from the position of the point sample over
the hemisphere about the normal of the point sample. If a ray does
not intersect the scene geometry, we map the direction of the ray to
the unit square using octahedral mapping and set the corresponding
pixel in the first octahedral map as 1. If a ray intersects the scene
geometry, we set the pixel as 1 for the second octahedral map. The
number of ray samples for precomputation could be small because
the masks of multiple point samples are merged in the next step.
We dilate the masks by one pixel to ensure that no rays are wrongly
excluded.

Next, we create two octahedral maps with the same size to those
of the point samples for each grid cell of the DVF and set all the pix-
els of the octahedral maps to 0. The merged visibility and occlusion
masks inside a grid cell are acquired by the logical OR operations
among the visibility and occlusion masks of the point samples as
expressed in Eqs. (5) and (6), and the occlusion label is computed
by Eqs. (7) and (8) and stored in each grid cell of the DVF. Rays
may be wrongly discarded because the query of an octahedral map
may jump to the adjacent octahedral maps near the border. To avoid
this problem, each octahedral map is padded by one pixel. Our pre-
computation algorithm is summarized in Algorithm 1.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.



Yang Xu et al. / Precomputed Discrete Visibility Fields for Real-Time Ray-Traced Environment Lighting

Algorithm 1: Precompute the DVF
Input: surface mesh M , N ray samples R1,R2, · · · ,RN
Output: precomputed DVF V

1 create N point samples s1,s2, · · · ,sN on M ;
2 create octahedral map OV

s (s) storing Vs(s,ω) for each s;
3 create octahedral map OO

s (s) storing Os(s,ω) for each s;
4 set all pixels of OV

s (s) and OO
s (s) as 0;

// Create masks of point samples
5 foreach point sample s = (p,n) do
6 foreach ray R = (p,ω) do
7 randomly rotate R along n;
8 project ω to unit square using octahedral mapping;
9 if R intersects scene geometry then

10 set the corresp. pixel in OO
s (s) as 1// Eq. (4)

11 else
12 set the corresp. pixel in OV

s (s) as 1// Eq. (3)
13 end
14 end
15 dilate OV

s (s) by one pixel;
16 dilate OO

s (s) by one pixel;
17 end
18 construct a uniform grid G for M ;
19 create octahedral map OV

c (c) for each grid cell c;
20 create octahedral map OO

c (c) for each grid cell c;
21 set all pixels of OV

c (c) and OO
c (c) as 0;

// Merge masks inside a grid cell
22 foreach point sample s = (p,n) do
23 locate the grid cell c by p;
24 foreach pixel in the octahedral maps of c do
25 Vc(c,ω)←Vc(c,ω)∨Vs(s,ω); // Eq. (5)
26 Oc(c,ω)← Oc(c,ω)∨Os(s,ω); // Eq. (6)
27 end
28 end
// Compute occlusion labels

29 foreach grid cell c in G do
30 rocc(c) =

Nocc(c)
Nocc(c)+Nvis(c)

; // Eq. (7)

31 if rocc(c)> 0.5 then
32 locc(c) = 1; // Eq. (8)
33 else
34 locc(c) = 0; // Eq. (8)
35 end
36 end

4.2. Runtime

We implemented the runtime algorithm of our method using Vulkan
Ray Tracing [KHBW20] with the extension VK_KHR_ray_query
allowing ray tracing in all shader stages to integrate ray tracing with
rasterization. We represent the DVF as a 2D texture array instead of
a 3D texture because interpolation between layers is not required.
The DVF texture contains the octahedral maps representing the vis-
ibility and occlusion masks, and the occlusion labels. The octahe-
dral maps are tiled on each layer of the texture array, which means
that the x- and y-axes of one layer of the texture array represent

Algorithm 2: Rendering with the precomputed DVF
Input: precomputed DVF V , incoming radiance of

environment map Li(ω), fragment position x,
fragment normal n, N randomly rotated ray samples
R1,R2, · · · ,RN

Output: incoming irradiance E(x)
1 E(x)← 0;
2 Eocc(x)← 0;
3 locate the grid cell c by x;
4 fetch occlusion label locc(c) from V ;
5 foreach ray R = (x,ω) do
6 project ω to unit square using octahedral mapping;
7 fetch visibility and occlusion masks V (c,ω),O(c,ω);

// More than half pixels are occluded
8 if locc(c) = 1 then

// Trace inside visible region
9 if V (c,ω) = 1 then

10 trace R;
11 if R does not intersects scene geometry then
12 E(x)← E(x)+ 1

N Li(ω); // Eq. (9)
13 end
14 end
15 else

// Trace inside occluded region
16 if O(c,ω) = 1 then
17 trace R;
18 if R intersects scene geometry then
19 Eocc(x)← Eocc(x)+ 1

N Li(ω);// Eq. (10)
20 end
21 end
22 end
23 end
24 if locc(c) = 0 then
25 evaluate Eunshad(n) by n and E ;
26 E(x)← Eunshad(n)−Eocc(x); // Eq. (11)
27 end

the two dimensions of the octahedral maps. As a result, each layer
stores multiple octahedral maps with the same height. Since the
visibility function is binary, we can store the visibility and occlu-
sion information in just two bits. We use three bits of each pixel of
the octahedral map to store the visibility mask, the occlusion mask,
and the occlusion label, respectively.

In the fragment shader, we first locate the grid cell using the
world-space fragment position, and the occlusion label is retrieved
from the center pixel value of the octahedral map. We shoot and
trace rays for each fragment. Based on the assumption of diffuse
BRDF, the ray samples should follow a cosine-weighted distribu-
tion. The Hammersley sequence [Nie92] is used to create the low-
discrepancy ray samples. To avoid the patterns caused by corre-
lation, we rotate the ray samples along the surface normal by the
values from a tiled blue noise texture [Pet16].

For each ray sample, we project the direction of the ray onto the
unit square using octahedral mapping to fetch the corresponding

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.



Yang Xu et al. / Precomputed Discrete Visibility Fields for Real-Time Ray-Traced Environment Lighting

Figure 4: One layer of the texture array presenting the precom-
puted DVF of the Bistro scene. Each layer stores multiple tiled oc-
tahedral maps with the same height. Each pixel of the texture has
8 bits. The highest bit stores the visibility mask, the second highest
bit stores the occlusion mask, and the third highest bit stores the
occlusion label.

pixel from the octahedral map. Bitwise AND operations with 128
and 64 are performed on the fetched pixels to obtain the visible and
occluded states from the visibility and occlusion mask of the grid
cell. If the occlusion label is 1, we discard the ray if the fetched
pixel is not visible in the visibility mask, and accumulate the in-
coming radiance from the environment map to obtain the incom-
ing irradiance. If the occlusion label is 0, we discard the ray if the
fetched pixel is not occluded in the occlusion mask and accumulate
the incoming radiance occluded by the scene geometry to acquire
the occluded irradiance. The occluded irradiance is then subtracted
from the unshadowed irradiance to obtain the incoming irradiance,
and we multiply the incoming irradiance by the diffuse albedo to
obtain the outgoing radiance of the current fragment. In our im-
plementation, we use the irradiance environment map represented
by 3rd-order SH coefficients [RH01] to evaluate the incoming ra-
diance from the environment map. Our runtime algorithm executed
in the fragment shader is described in Algorithm 2.

5. Results and Discussion

To evaluate our proposed method, the rendering results of two
scenes are exhibited in this section. The first scene is the Crytek
Sponza (262 K triangles) [McG17] and the second scene is the exte-
rior of the Amazon Lumberyard Bistro (2.8 M triangles) [Lum17].
The two scenes are both illuminated by the Uffizi Gallery environ-
ment map [Deb99]. We rendered all the images at a resolution of
1920×1080 on an NVIDIA GeForce RTX 3080 GPU. The size of
the octahedral map is 18×18 and two additional pixels are padded
around the border. The number of ray samples to precompute the

DVFs is 128. One layer of the texture array, which presents the
precomputed DVF of the Bistro scene, is exhibited in Figure 4.

The comparison of the images rendered with DVFs to those ren-
dered without DVFs, along with the rendering times and root mean
squared error (RMSE), are presented in Figure 5. The columns
from left to right are the textured rendering results with DVFs, the
untextured rendering results with DVFs, the untextured rendering
results without DVFs, and the error between rendered images with
and without DVFs, respectively. The number of point samples in
the precomputation stage is 10 M. For the Crytek Sponza scene,
the cell size of the DVF is 50 cm, the grid resolution of the DVF is
77× 48× 34, the memory footprint of the DVF is 49,008 KB, and
the number of ray samples per pixel at runtime is 128. For the Bistro
scene, the cell size is 100 cm, the grid resolution is 111×118×34,
the memory footprint of the DVF is 173,958 KB, and the ray sam-
ple number is 64. We can see that the rendering results with DVFs
are almost the same as those without DVFs. The error only appears
in several pixels corresponding to geometry details. But the render-
ing time is significantly reduced.

We investigated the influence of the number of point samples in
the precomputation stage. The point samples for precomputation,
one layer of the DVFs, the images rendered by our method, the ab-
solute error and RMSE between rendered images with and without
DVFs, and the computation times of the precomputation stage in
the Crytek Sponza scene using different numbers of point samples
are given in Figure 6. The cell size of the DVF and the number of
ray samples per pixel are the same as those of previous results. The
precomputation is performed on an Intel Core i9-10980XE CPU.
The results indicate that the RMSE reduces as the number of point
samples gets larger. However, the time spent on precomputation
gets longer when increasing the number of point samples. How-
ever, the precomputation is still fast even when 10 M point samples
are utilized. Besides, the rendering time is longer when the num-
ber of point samples is larger because several rays that need to be
traced are wrongly discarded when the number of point samples is
small.

The cell size of DVFs can also affect the rendering results. We
compare the rendered images without textures by our method, the
absolute error and RMSE between rendered images with and with-
out DVFs, the rendering times, and the memory consumptions of
the DVFs with different cell sizes in the Crytek Sponza scene as
shown in Figure 7. The number of point samples is 10 M and the
number of ray samples is 128. We can see that when the cell size
gets larger, both the memory consumption of the DVFs and the
RMSE between rendered images with and without DVFs reduce at
the price of longer time spent at runtime. The error is negligible
when the grid size is larger than 100 cm.

We also compare the images rendered by our method along with
the rendering times using different numbers of ray samples per
pixel (spp) in the Crytek Sponza scene as exhibited in Figure 8.
The rendering times without the DVF are also listed along with the
speedup ratios in 1. The number of point samples is 10 M and the
cell size of the DVF is 50 cm. We can see from the rendering times
that the speedup ratio is low when the number of ray samples is
small, perhaps because other computations besides ray tracing take
a larger percentage of time.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.



Yang Xu et al. / Precomputed Discrete Visibility Fields for Real-Time Ray-Traced Environment Lighting

Textured with DVFs Untextured with DVFs Untextured without DVFs Absolute error

C
ry

te
k

Sp
on

za

15.74 ms 15.74 ms 55.19 ms RMSE: 0.00641

B
is

tr
o

33.67 ms 33.67 ms 53.90 ms RMSE: 0.00901

Figure 5: Comparisons of the rendering results with DVFs to those without DVFs in two scenes. From left to right: textured results with
DVFs, untextured results with DVFs, untextured results without DVFs, and the error between rendered images with and without DVFs. Upper
row: Crytek Sponza. Lower row: Bistro.

Table 1: Rendering time (in milliseconds) comparison of rendering
results with and without the DVF using different ray samples per
pixel.

spp 16 32 64 128

w/o the DVF 6.69 13.79 27.28 55.19
w/ the DVF 2.23 4.02 7.81 15.74
Speedup ratio 3.12 3.43 3.49 3.51

To demonstrate that determining whether the visible or the oc-
cluded regions should be traced using the occlusion labels stored in
the DVFs can achieve optimal performance, we compare the ren-
dered images and rendering times with occlusion labels to those
only tracing the visible regions in the Bistro scene from a view-
point on the roof. The rendered images and the visualized occlu-
sion labels (white denotes more pixels are occluded in the occlu-
sion masks) are displayed in Figure 9. The number of point sam-
ples in the precomputation stage is 10 M, the cell size of the DVF is
100 cm, and the number of ray samples per pixel at runtime is 64.
Since most of the hemispherical domain is visible at a surface point
of the roof, no rays may be excluded if we trace rays in the visible
region. In this case, the occlusion labels can be introduced to de-
termine whether the visible or occluded regions should be traced.
Since the occlusion labels are 0 on the roof as shown in Figure 9
right, we trace rays in the occluded region instead, which reduces
the rendering time.

6. Limitations and Future Work

Dynamic Scenes. Our method cannot support dynamic scenes be-
cause we precompute the DVF on the CPU. Scenes can be animated
at runtime if the precomputation process is implemented on the
GPU. With hardware-accelerated ray tracing, fast precomputation
at runtime is possible. To perform the precomputation at runtime,

the algorithm to generate point samples should also be adapted to
the GPU.

Indirect Illumination and Local Area Lights. We ignore indirect
illumination and local area lights. They are not supported in this
work because the proposed DVFs store visibility information about
the environment, which cannot be applied to speed up the compu-
tation of indirect illumination and the lighting of local area lights.
Further research aiming to speed up rendering indirect illumination
and the lighting of local area lights will be conducted in the future.

All-Frequency Environment Maps. In this work, we only use
low-frequency environment maps represented by low-order SHs as
the environment light sources. We will adapt our method to effi-
ciently render environment lighting under all-frequency environ-
ment maps in the future.

Glossy BRDFs. We assume diffuse BRDF in this work, but the
adoption of glossy BRDFs is straightforward. We only need to gen-
erate the ray samples according to the glossy BRDFs of the surface
points, and ignore the occlusion labels in the DVFs to trace in the
visible regions for all surface points. We give the rendering results
with a glossy BRDF and the comparison of the rendering times
without and with DVFs in Figure 10. For the Crytek Sponza scene,
the rendering time can be reduced from 54.64 ms to 10.14 ms by the
DVF, and 48.75 ms to 27.16 ms for the Bistro scene. Both speedup
ratios are even larger than those with diffuse BRDFs.

Point Samples Generation. In this work, we generate point sam-
ples of the scene by random sampling. However, random sampling
may lead to errors compared to the rendering results without DVFs
because the geometry details may be missed by sampling, espe-
cially when the number of point samples is not sufficiently high.
The point samples should be generated by a smarter sampling strat-
egy to avoid artifacts due to limited sample numbers.

Compression. We use only three bits of each pixel in the octahedral
map, and the one bit storing the occlusion label in an octahedral
map is wasteful because each grid cell only needs one occlusion

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.



Yang Xu et al. / Precomputed Discrete Visibility Fields for Real-Time Ray-Traced Environment Lighting

80 K point samples 400 K point samples 2 M point samples 10 M point samples
Precomput. time: 1.651 s Precomput. time: 3.279 s Precomput. time: 11.187 s Precomput. time: 50.558 s

Po
in

ts
am

pl
es

D
V

F
la

ye
r

R
en

de
re

d
im

ag
es

11.41 ms 13.07 ms 14.69 ms 15.74 ms

A
bs

ol
ut

e
er

ro
r

RMSE: 0.25301 RMSE: 0.03596 RMSE: 0.01321 RMSE: 0.00641

Figure 6: Comparison of the rendering results without textures in the Crytek Sponza scene using different numbers of point samples used in
the precomputation stage. From left to right: 80 K, 400 K, 2 M, and 10 M point samples. From top to bottom: point samples, one layer of the
DVFs, images rendered by our method, and absolute error between rendered images with and without DVFs.

label. We can pack multiple pixels of an octahedral map into one
pixel of a texture layer to reduce the memory footprint of the DVF.
We can also exploit the sparseness of the DVFs and store the DVFs
in sparse voxel octrees [LK10] because a large number of pixels in
the octahedral maps of the DVFs are zero. Besides, many neigh-
borhood pixels in the octahedral maps have the same values, which
can also benefit compression.

Denoising. Since our proposed method can significantly speed up
ray-traced environment lighting to allow the use of a large num-
ber of ray samples, noises still exist and can be suppressed to ob-
tain better results. SVGF [SKW∗17] or learning-based denoiser
[MZV∗20, FWHB21, IMF∗21] can be applied to our method.

Irradiance Caching. Irradiance caching computes irradiance at
sparse locations in the scene and interpolates these irradiance sam-
ples to obtain the final results. Therefore, the number of scene
points that need to be shaded by ray tracing can be significantly
reduced. Screen-space irradiance caching [WWZ∗09] can be intro-
duced in our work to further improve rendering efficiency.

7. Conclusion

We present discrete visibility fields, which store the visibility and
occlusion masks in a uniform grid to speed up ray-traced direct il-
lumination of low-frequency environment lighting for static scenes
by excluding the unnecessary rays. At precomputation time, we
first construct a uniform grid for the scene and generate point sam-
ples of the scene. We then create visibility and occlusion masks
at the positions of the point samples and merge the visibility and
occlusion masks of the point samples inside the grid by the logi-
cal OR operation. We also store a label indicating whether more
than half of the directions are occluded in the occlusion mask of
each grid cell. The octahedral parameterization is adopted to rep-
resent the visibility and occlusion masks. At runtime, we exclude
the rays that are not visible to the environment or the rays that are
not occluded by the scene geometry according to the visibility and
occlusion masks in the DVF, which can significantly reduce the
rendering times.

Our method is simple to implement, and the precomputation time
is short. Compared to the existing environment lighting render-
ing methods based on precomputation, the main advantage of our

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.



Yang Xu et al. / Precomputed Discrete Visibility Fields for Real-Time Ray-Traced Environment Lighting

Cell size: 50 cm Cell size: 100 cm Cell size: 200 cm Cell size: 400 cm
Grid resolution: 77×48×34 Grid resolution: 40×25×18 Grid resolution: 21×14×10 Grid resolution: 12×8×6

DVF memory: 49,088 KB DVF memory: 7,032 KB DVF memory: 1,149 KB DVF memory: 226 KB

R
en

de
re

d
im

ag
es

15.74 ms 16.17 ms 17.78 ms 22.89 ms

A
bs

ol
ut

e
er

ro
r

RMSE: 0.00641 RMSE: 0.00014 RMSE: 0.00002 RMSE: 0

Figure 7: Comparison of the rendering results without textures in the Crytek Sponza scene using DVFs with different cell sizes. From left to
right: 50, 100, 200, and 400 cm. Upper row: rendering results of our method. Lower row: absolute error between rendered images with and
without DVFs.

2.23 ms 4.02 ms 7.81 ms 15.74 ms
16 spp 32 spp 64 spp 128 spp

Figure 8: Comparison of the rendering results without textures in the Crytek Sponza scene using different numbers of ray samples per pixel.
From left to right: 16, 32, 64, and 128 spp.

method is that we can produce comparable results to traditional ray
tracing because we only discard the unnecessary rays during ray
tracing. Besides, our method is free of tessellation or parameteriza-
tion of the meshes.

Acknowledgements

We would like to thank the anonymous reviewers for their help-
ful comments. This work was supported by the National Key
R&D Program of China (2020YFC1523303, 2019YFC1521102),
the Key Research and Development Program of Shaanxi
(2019ZDLSF07-02, 2019GY-215), the Major Research and Devel-
opment Project of Qinghai (2020-SF-143), and the Scientific Re-
search Program Funded by Shaanxi Provincial Education Depart-
ment (21JK0931).

References

[ARB90] AIREY J. M., ROHLF J. H., BROOKS F. P.: Towards image
realism with interactive update rates in complex virtual building environ-
ments. SIGGRAPH Comput. Graph. (Proc. I3D ’90) 24, 2 (Mar. 1990),
41–50. doi:10.1145/91385.91416. 3

[ARBJ03] AGARWAL S., RAMAMOORTHI R., BELONGIE S., JENSEN
H. W.: Structured importance sampling of environment maps. ACM
Trans. Graph. (Proc. SIGGRAPH ’03) 22, 3 (July 2003), 605–612. doi:
10.1145/882262.882314. 3

[BBH13] BARÁK T., BITTNER J., HAVRAN V.: Temporally coherent
adaptive sampling for imperfect shadow maps. Comput. Graph. Forum
(Proc. EGSR ’13) 32, 4 (July 2013), 87–96. doi:10.1111/cgf.
12154.

[BGH05] BURKE D., GHOSH A., HEIDRICH W.: Bidirectional im-
portance sampling for direct illumination. In Proc. EGSR ’05 (2005),
pp. 147–156. doi:10.2312/EGWR/EGSR05/147-156. 3

[BMW∗09] BITTNER J., MATTAUSCH O., WONKA P., HAVRAN V.,
WIMMER M.: Adaptive global visibility sampling. ACM Trans.
Graph. (Proc. SIGGRAPH ’09 28, 3 (July 2009), 94. doi:10.1145/
1531326.1531400. 3

[BWP∗20] BITTERLI B., WYMAN C., PHARR M., SHIRLEY P.,
LEFOHN A., JAROSZ W.: Spatiotemporal reservoir resampling for real-
time ray tracing with dynamic direct lighting. ACM Trans. Graph. (Proc.
SIGGRAPH ’20) 39, 4 (July 2020), 148. doi:10.1145/3386569.
3392481. 3

[CAM08a] CLARBERG P., AKENINE-MÖLLER T.: Exploiting visibility
correlation in direct illumination. Comput. Graph. Forum (Proc. EGSR
’08) 27, 4 (Sept. 2008), 1125–1136. doi:https://doi.org/10.
1111/j.1467-8659.2008.01250.x. 2, 3

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

https://doi.org/10.1145/91385.91416
https://doi.org/10.1145/882262.882314
https://doi.org/10.1145/882262.882314
https://doi.org/10.1111/cgf.12154
https://doi.org/10.1111/cgf.12154
https://doi.org/10.2312/EGWR/EGSR05/147-156
https://doi.org/10.1145/1531326.1531400
https://doi.org/10.1145/1531326.1531400
https://doi.org/10.1145/3386569.3392481
https://doi.org/10.1145/3386569.3392481
https://doi.org/https://doi.org/10.1111/j.1467-8659.2008.01250.x
https://doi.org/https://doi.org/10.1111/j.1467-8659.2008.01250.x


Yang Xu et al. / Precomputed Discrete Visibility Fields for Real-Time Ray-Traced Environment Lighting

10.12 ms 10.12 ms 13.18 ms N/A
Textured with occlusion labels Untextured with occlusion labels Untextured without occlusion labels Visualized occlusion labels

Figure 9: Comparison of the rendering results in the Bistro scene with and without occlusion labels stored in the DVFs. Left to right:
Visualized occlusion labels, textured rendered image with occlusion labels to decide whether the visible or the occluded regions should be
traced, untextured rendered image with occlusion labels, and untextured rendered image with rendered image without occlusion labels, which
traces rays in the visible regions.

53.81 ms (w/o the DVF) 52.51 ms (w/o the DVF)
11.69 ms (w/ the DVF) 29.71 ms (w/ the DVF)
Crytek Sponza, 128 spp Bistro, 64 spp

Figure 10: Rendering results with a glossy BRDF in two scenes.
Left: Crytek Sponza. Right: Bistro.

[CAM08b] CLARBERG P., AKENINE-MÖLLER T.: Practical product im-
portance sampling for direct illumination. Comput. Graph. Forum (Proc.
Eurographics ’08) 27, 2 (Apr. 2008), 681–690. doi:10.1111/j.
1467-8659.2008.01166.x. 3

[CDE∗14] CIGOLLE Z. H., DONOW S., EVANGELAKOS D., MARA M.,
MCGUIRE M., MEYER Q.: A survey of efficient representations for
independent unit vectors. J. Comput. Graph. Tech. 3, 2 (April 2014),
1–30. URL: http://jcgt.org/published/0003/02/01/. 5

[CJAMJ05] CLARBERG P., JAROSZ W., AKENINE-MÖLLER T.,
JENSEN H. W.: Wavelet importance sampling: efficiently evaluating
products of complex functions. ACM Trans. Graph. (Proc. SIGGRAPH
’05) 24, 3 (July 2005), 1166–1175. doi:10.1145/1073204.
1073328. 3

[CRW09] CLINE D., RAZDAN A., WONKA P.: A comparison of tabular
PDF inversion methods. Comput. Graph. Forum 28, 1 (Feb. 2009), 154–
160. doi:10.1111/j.1467-8659.2008.01197.x. 3

[DDTP00] DURAND F., DRETTAKIS G., THOLLOT J., PUECH C.:
Conservative visibility preprocessing using extended projections. In
Proc. SIGGRAPH ’00 (2000), p. 239–248. doi:10.1145/344779.
344891. 3

[Deb99] DEBEVEC P.: Light probe image gallery, 1999. URL: https:
//www.pauldebevec.com/Probes. 7

[FWHB21] FAN H., WANG R., HUO Y., BAO H.: Real-time Monte
Carlo denoising with weight sharing kernel prediction network. Com-
put. Graph. Forum (Proc. EGSR ’21) 40, 4 (July 2021), 15–27. doi:
10.1111/cgf.14338. 2, 3, 9

[GEE20] GUO J. J., EISEMANN M., EISEMANN E.: Next event estima-
tion++: Visibility mapping for efficient light transport simulation. Com-
put. Graph. Forum (Proc. Pacific Graphics ’20) 39, 7 (Nov. 2020), 205–
217. doi:10.1111/cgf.14138. 2, 3

[GN15] GIRAUD A., NOWROUZEZAHRAI D.: Practical Shading of

Height Fields and Meshes using Spherical Harmonic Exponentiation. In
Proc. EGSR ’15 (2015), p. 1–8. doi:10.2312/sre.20151161. 3

[GSHG98] GREGER G., SHIRLEY P., HUBBARD P. M., GREENBERG
D. P.: The irradiance volume. IEEE Comput. Graph. Appl. 18, 2 (Mar.
1998), 32–43. doi:10.1109/38.656788. 2

[IMF∗21] IŞIK M., MULLIA K., FISHER M., EISENMANN J., GHARBI
M.: Interactive Monte Carlo denoising using affinity of neural features.
ACM Trans. Graph. (Proc. SIGGRAPH ’21) 40, 4 (July 2021), 37. doi:
10.1145/3450626.3459793. 2, 3, 9

[JKG16] JENDERSIE J., KURI D., GROSCH T.: Precomputed illumi-
nance composition for real-time global illumination. In Proc. I3D ’16
(2016), p. 129–137. doi:10.1145/2856400.2856407. 2

[KHBW20] KOCH D., HECTOR T., BARCZAL J., WERNESS E.: Ray
tracing in Vulkan, Dec. 2020. URL: https://www.khronos.org/
blog/ray-tracing-in-vulkan. 6

[KK03] KOLLIG T., KELLER A.: Efficient illumination by high dynamic
range images. In Proc. EGSR ’03 (2003), pp. 45–51. doi:10.2312/
EGWR/EGWR03/045-051. 3

[LK10] LAINE S., KARRAS T.: Two methods for fast ray-cast ambient
occlusion. Comput. Graph. Forum (Proc. EGSR ’10) 29, 4 (Aug. 2010),
1325–1333. doi:10.1111/j.1467-8659.2010.01728.x. 9

[Lum17] LUMBERYARD A.: Amazon Lumberyard Bistro, open research
content archive (ORCA), July 2017. URL: http://developer.
nvidia.com/orca/amazon-lumberyard-bistro. 7

[LZT∗08] LEHTINEN J., ZWICKER M., TURQUIN E., KONTKANEN J.,
DURAND F., SILLION F., AILA T.: A meshless hierarchical representa-
tion for light transport. ACM Trans. Graph. (Proc. SIGGRAPH ’08) 27,
3 (Aug. 2008), 37. doi:10.1145/1360612.1360636. 2

[McG17] MCGUIRE M.: Computer graphics archive, July 2017. URL:
https://casual-effects.com/data. 7

[MMNL17] MCGUIRE M., MARA M., NOWROUZEZAHRAI D., LUE-
BKE D.: Real-time global illumination using precomputed light field
probes. In Proc. I3D ’17 (2017), p. 2. doi:10.1145/3023368.
3023378. 2

[MZV∗20] MENG X., ZHENG Q., VARSHNEY A., SINGH G., ZWICKER
M.: Real-time Monte Carlo denoising with the neural bilateral grid. In
Proc. EGSR ’20 (2020). doi:10.2312/sr.20201133. 9

[Nie92] NIEDERREITER H.: Random Number Generation and Quasi-
Monte Carlo Methods. Society for Industrial and Applied Mathematics,
1992. doi:10.1137/1.9781611970081. 6

[NVI18] NVIDIA: NVIDIA Turing GPU Architecture. WP-09183-
001_v01, 2018. 1

[ODJ04] OSTROMOUKHOV V., DONOHUE C., JODOIN P.-M.: Fast hi-
erarchical importance sampling with blue noise properties. ACM Trans.
Graph. (Pro. SIGGRAPH ’04) 23, 3 (Aug. 2004), 488–495. doi:
10.1145/1015706.1015750. 3

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

https://doi.org/10.1111/j.1467-8659.2008.01166.x
https://doi.org/10.1111/j.1467-8659.2008.01166.x
http://jcgt.org/published/0003/02/01/
https://doi.org/10.1145/1073204.1073328
https://doi.org/10.1145/1073204.1073328
https://doi.org/10.1111/j.1467-8659.2008.01197.x
https://doi.org/10.1145/344779.344891
https://doi.org/10.1145/344779.344891
https://www.pauldebevec.com/Probes
https://www.pauldebevec.com/Probes
https://doi.org/10.1111/cgf.14338
https://doi.org/10.1111/cgf.14338
https://doi.org/10.1111/cgf.14138
https://doi.org/10.2312/sre.20151161
https://doi.org/10.1109/38.656788
https://doi.org/10.1145/3450626.3459793
https://doi.org/10.1145/3450626.3459793
https://doi.org/10.1145/2856400.2856407
https://www.khronos.org/blog/ray-tracing-in-vulkan
https://www.khronos.org/blog/ray-tracing-in-vulkan
https://doi.org/10.2312/EGWR/EGWR03/045-051
https://doi.org/10.2312/EGWR/EGWR03/045-051
https://doi.org/10.1111/j.1467-8659.2010.01728.x
http://developer.nvidia.com/orca/amazon-lumberyard-bistro
http://developer.nvidia.com/orca/amazon-lumberyard-bistro
https://doi.org/10.1145/1360612.1360636
https://casual-effects.com/data
https://doi.org/10.1145/3023368.3023378
https://doi.org/10.1145/3023368.3023378
https://doi.org/10.2312/sr.20201133
https://doi.org/10.1137/1.9781611970081
https://doi.org/10.1145/1015706.1015750
https://doi.org/10.1145/1015706.1015750


Yang Xu et al. / Precomputed Discrete Visibility Fields for Real-Time Ray-Traced Environment Lighting

[Pet16] PETERS C.: Free blue noise textures, Dec. 2016. URL: https:
//momentsingraphics.de/BlueNoise.html. 6

[PGSD13] POPOV S., GEORGIEV I., SLUSALLEK P., DACHSBACHER
C.: Adaptive quantization visibility caching. Comput. Graph. Forum
(Proc. Eurographics ’13) 32, 2pt4 (May 2013), 399–408. doi:10.
1111/cgf.12060. 2, 3

[RGK∗08] RITSCHEL T., GROSCH T., KIM M. H., SEIDEL H. P.,
DACHSBACHER C., KAUTZ J.: Imperfect shadow maps for efficient
computation of indirect illumination. ACM Trans. Graph. (Proc. SIG-
GRAPH Asia ’08) 27, 5 (Dec. 2008), 129. doi:10.1145/1409060.
1409082. 2

[RH01] RAMAMOORTHI R., HANRAHAN P.: An efficient representa-
tion for irradiance environment maps. In Proc. SIGGRAPH ’01 (2001),
p. 497–500. doi:10.1145/383259.383317. 7

[RWS∗06] REN Z., WANG R., SNYDER J., ZHOU K., LIU X., SUN B.,
SLOAN P.-P., BAO H., PENG Q., GUO B.: Real-time soft shadows in
dynamic scenes using spherical harmonic exponentiation. ACM Trans.
Graph. (Proc. SIGGRAPH ’06) 25, 3 (July 2006), 977–986. doi:10.
1145/1141911.1141982. 2

[SDDS00] SCHAUFLER G., DORSEY J., DÉCORET X., SILLION F. X.:
Conservative volumetric visibility with occluder fusion. In Proc. SIG-
GRAPH ’00 (2000), pp. 229–238. doi:10.1145/344779.344886.
3

[SGNS07] SLOAN P.-P., GOVINDARAJU N. K., NOWROUZEZAHRAI
D., SNYDER J.: Image-based proxy accumulation for real-time soft
global illumination. In Proc. Pacific Graphics ’07 (Oct. 2007), pp. 97–
105. doi:10.1109/PG.2007.28. 2

[SHHS03] SLOAN P.-P., HALL J., HART J., SNYDER J.: Clustered
principal components for precomputed radiance transfer. ACM Trans.
Graph. (Proc. SIGGRAPH ’03) 22, 3 (July 2003), 382–391. doi:
10.1145/882262.882281. 2

[SKS02] SLOAN P.-P., KAUTZ J., SNYDER J.: Precomputed radiance
transfer for real-time rendering in dynamic, low-frequency lighting envi-
ronments. ACM Trans. Graph. (Proc. SIGGRAPH ’02) 21, 3 (July 2002),
527–536. doi:10.1145/566654.566612. 2

[SKW∗17] SCHIED C., KAPLANYAN A., WYMAN C., PATNEY A.,
CHAITANYA C. R. A., BURGESS J., LIU S., DACHSBACHER C.,
LEFOHN A., SALVI M.: Spatiotemporal variance-guided filtering: Real-
time reconstruction for path-traced global illumination. In Proc. HPG
’12 (2017), p. 2. doi:10.1145/3105762.3105770. 2, 3, 9

[SSS∗20] SEYB D., SLOAN P.-P., SILVENNOINEN A., IWANICKI M.,
JAROSZ W.: The design and evolution of the UberBake light baking
system. ACM Trans. Graph. (Proc. SIGGRAPH ’20) 39, 4 (July 2020).
doi:10.1145/3386569.3392394. 2

[SSSK04] SZÉCSI L., SBERT M., SZIRMAY-KALOS L.: Combined cor-
related and importance sampling in direct light source computation and
environment mapping. Comput. Graph. Forum (Proc. Eurographics ’04)
23, 3 (Aug. 2004), 585–593. doi:10.1111/j.1467-8659.2004.
00790.x.

[TCE05] TALBOT J. F., CLINE D., EGBERT P.: Importance resampling
for global illumination. In Proc. EGSR ’05 (2005), pp. 139–146. doi:
10.2312/EGWR/EGSR05/139-146. 3

[TS91] TELLER S. J., SÉQUIN C. H.: Visibility preprocessing for inter-
active walkthroughs. SIGGRAPH Comput. Graph. (Proc. SIGGRAPH
’91) 25, 4 (July 1991), 61–70. doi:10.1145/122718.122725. 3

[VG95] VEACH E., GUIBAS L. J.: Optimally combining sampling tech-
niques for Monte Carlo rendering. In Proc. SIGGRAPH ’95 (1995),
pp. 419–428. doi:10.1145/218380.218498. 3

[Whi80] WHITTED T.: An improved illumination model for shaded dis-
play. Commun. ACM 23, 6 (June 1980), 343–349. doi:10.1145/
358876.358882. 1

[Wil78] WILLIAMS L.: Casting curved shadows on curved surfaces. SIG-
GRAPH Comput. Graph. (Proc. SIGGRAPH ’78) 12, 3 (Aug. 1978),
270–274. doi:10.1145/965139.807402. 1

[WWS00] WONKA P., WIMMER M., SCHMALSTIEG D.: Visibility pre-
processing with occluder fusion for urban walkthroughs. In Proc. EGWR
’00 (2000), pp. 71–82. doi:10.1007/978-3-7091-6303-0_7.
3

[WWZ∗09] WANG R., WANG R., ZHOU K., PAN M., BAO H.: An
efficient gpu-based approach for interactive global illumination. ACM
Trans. Graph. (Proc. SIGGRAPH ’09) 28, 3 (July 2009), 91. doi:10.
1145/1531326.1531397. 9

[ZHL∗05] ZHOU K., HU Y., LIN S., GUO B., SHUM H.-Y.: Precom-
puted shadow fields for dynamic scenes. ACM Trans. Graph. (Proc.
SIGGRAPH ’05) 24, 3 (July 2005), 1196–1201. doi:10.1145/
1073204.1073332. 2

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

https://momentsingraphics.de/BlueNoise.html
https://momentsingraphics.de/BlueNoise.html
https://doi.org/10.1111/cgf.12060
https://doi.org/10.1111/cgf.12060
https://doi.org/10.1145/1409060.1409082
https://doi.org/10.1145/1409060.1409082
https://doi.org/10.1145/383259.383317
https://doi.org/10.1145/1141911.1141982
https://doi.org/10.1145/1141911.1141982
https://doi.org/10.1145/344779.344886
https://doi.org/10.1109/PG.2007.28
https://doi.org/10.1145/882262.882281
https://doi.org/10.1145/882262.882281
https://doi.org/10.1145/566654.566612
https://doi.org/10.1145/3105762.3105770
https://doi.org/10.1145/3386569.3392394
https://doi.org/10.1111/j.1467-8659.2004.00790.x
https://doi.org/10.1111/j.1467-8659.2004.00790.x
https://doi.org/10.2312/EGWR/EGSR05/139-146
https://doi.org/10.2312/EGWR/EGSR05/139-146
https://doi.org/10.1145/122718.122725
https://doi.org/10.1145/218380.218498
https://doi.org/10.1145/358876.358882
https://doi.org/10.1145/358876.358882
https://doi.org/10.1145/965139.807402
https://doi.org/10.1007/978-3-7091-6303-0_7
https://doi.org/10.1145/1531326.1531397
https://doi.org/10.1145/1531326.1531397
https://doi.org/10.1145/1073204.1073332
https://doi.org/10.1145/1073204.1073332

